Baseline Editior2 TR 24772 WG 23/N 027

ISO/IEC JTC 1/22N OOOO

Date:2012-09-30
ISO/IEC TR 24772
Edition 2
ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Information Technology Programming Languages Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selactidise

Elément introductit Elément principat Partien: Titre de la partie

Warning

This document is not an ISO Intational Standard. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevaenhpeaghts of which they
are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage:50) approvalstage
Document language: E

© ISTIEC2012 ¢ Al rights reserved i

WG 23/N 027 Baseline Edition 2 TR 24772

Gopyright notice

This ISO document is a working draft or committee draft and is copypigiécted by ISO. While the
reproduction of working drafts or committee drafts in afoym for use by participants in the ISO
standards development process is permitted without prior permission from 1SO, neither this document
nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose
without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed
aK2gy o0St2¢ 2NJ G2 L{hQa YSYOSNIoO62R& Ay (G(KS 02

ISO copyright office

Case postale 56, CF211 Geneva 20
Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISTIEC2012 ¢ All rights reserve

as
dzy (i NE

Baseline Editior2 TR 24772 WG 23/N 027

Contents Page
011 o PSSP UUSU USRS XV
10T [1 Tox 1o o RSP PPP XVi
I T o0 o1 P 17
P Lo g g F= LNV o] (T = o o = USSP 17
3. Terms and definitions, symbols and conventians...........ccoooooiiiiiiiic e, 17
3.1 Terms and defiNItIONS.........ooiiiiiiiiii e a e e e ae e e e e e e e e e e e aaaaaaaaaas 17
3.2 SYMDOIS ANA CONVENTIONSceeiiiiieiiiiiiii ettt e e e e e e e e e e s eeemr e e e e e e e e e nnnees 21
O T TS (ol oo g [od=T o = 22
4.1 Purpose of this TEChNIEREPOIT......c.ouuiiii i e e e et e e e e e e e e eetraanameeeeeenes 22
A 1 (=1 o [=To = TN o 1T o Lo = PSP 22
4.3 HOW 10 USE thiS HOCUMENL.uiiiiiiieeii ittt ettt e e e e s ame s et e e e e e e e e e bbb s emraeeeeeeeeeeannn 23
B VUINEIADIIILY ISSUES.....uutiii et e et s et e e e e e e e e e e ettt s e e e emraean e s e e eeeeeeetennneeeeeen 24
5.1 PrediCtable ©XECULION.oiiiiiiieeiceee e cetii e s s e s s s s e s s e e s e e s s e e s s s amn e e e e aaaaaaeaaaaaaaaaeas 24
5.2 Sources of unpredictability in language specificatiQn...........cccooeiiiiiiiiic e, 25
5.2.1 Incomplete or evolving SPECIfICALION........cccceiiieeie e e emr e e e e e e et e n 25
5.2.2 UNdefined DENAVIOUL..........co ot 26
5.2.3 Unspecified DENAVIOUL.........cccoooiececce e 26
5.2.4 Implementatiordefined DENAVIOU...........cooiiiiiii e 26
5.2.5 DIffiCUIt fEALUINES. ...t e e e e ranraaae 26
5.2.6 Inadequate [anQUAGE SUPPOLL........uurrrrriirririerierieresseessaessasssssssss s sss s ssimeeeeeeaaaeaaaaaaaaaaaaaaeeseesmeseseeees 26
5.3 Sources of unpredictability in |aNQUAGE USAGE..........coiiiiiiiiiiii et m e 26
5.3.1 POrting and iNTEIOPEIALION.ueiiiieeeiiiiiiiei et e e e e e e et e e e e e e s s imr e bbb e e et e e e e e s eansbbe s e e e amreeeeeeaaann 26
5.3.2 Compiler SEIECION AN USAGE........uuuriiriiiiiiiiiiiiierassee e ee s s s s s s s e sime e e e e e e e e e e e e aaaaaeaeaaaaeeeearaeeeeeees 27
6. Programming Language VUINErabilities...........cooiiiiiiiiiiieiieeeee e 27
L0 CT=T 1= - | 27
L0220 =1 0 11 T] o o | 27
6.3 TYPE SYSIEM [THNI ... eeeiieieiie ettt e e e e e s bbb ettt e et e e e e e e et r s e e e e e e e e aann 28
6.4 Bit Representations [STR] iiuiiiiiiiiiiiitimrss s se s ss s s s s ss s s s sime e e e e e e e aaaeaaaaaaaaaaaaaeeesamrarerereeeeeeeees 30
6.5 Floatingpoint ArithMELIC [PLF]........u e e e e e e e e e e e e e ameeeeeeeeees 32
6.6 ENUMETALOr ISSUES [CCB]. . uuitiiiiiiiiiiiiiiit ettt e e e et e e st e et e e e e e e bbb ma e e e e e e e e e e ann 34
6.7 Numeric Conversion Errors [FLC]......o e e e srme e e e e e 36
6.8 String TerminNation [CIMY e e e e e e e e e e e e aaaaaaaaaaeaaeeameeeeeeeeeeeeeeeees 38
6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]...........ooiiiiiiiiiimiiiiiieeeee e 39
6.10 Unchecked Array INAeXing [XYZ].....oooiiiiiiiiiie e e e e e 41
6.11 Unchecked Array CopYing XY V.. et m e 43
6.12 Pointer Casting and Pointer Type Changes [HEC].........ovviiiiiii e a4
6.13 Pointer ArithmetiC [RVG].....uuuuiiiiiiiiiiiiiiiiiitiersssss s sss s ss s sss s ss s sss s ssimeaaeaeeaaaeaaaaaaaaaaaeaeeeessmrenessesseesene 4D

© ISTIEC2012 ¢ All rights reserved ili

WG 23/N 027 Baseline Edition 2 TR 24772

6.14 Null Pointer Dereference [XYH] 46
6.15 Dangling Reference t0 Heap [XY.K] . ..o e me s a7
6.16 Arithmetic Wraparound Error [FIE]........oo ittt 50
6.17 Using Shift Operations for Multiplication and Division [PIK]........ccccooiiiiiiiiiiiioe e, 51
6.18 SigN EXIENSION EITON [XZI]... ettt e e e e e e emr e e e e e e e e annes 52
6.19 Choice of Clear Names [NALL. ...t e e e e rme b 53
LI 0J DI=T= T IS (o (=TT] 55
6.21 UNUSE Variable [YZS]ottt e e e e e e e et e e e 56
6.22 Identifier Name REUSE [YOW].....uuuiiiiiieiiiiiiiit ettt e e e s s rme et e e e e e s st e e enreeeeeaeeas 57
6.23 NamMESPACE ISSUES [BuL]....ccuiiiiiiiiiiiiieiiiiie et e e e e ettt mr e e e et r e e e e e e e e e teaa e e e eeann e e eeeeees 59
6.24 Initialization of VariableS [LAV]........ooo et e e 61
6.25 Operator Precedence/Order of Evaluation [JCW].......ccoueiiiiiiiiiiiieiieee e me e 63
6.26 Sideeffects and Order of Evaluation [SAMI........ooi i e e emrerarn e e e e e e eeaeend 65
6.27 Likely Incorrect EXPression [KQAL..... ..o ittt e s enre s 66
6.28 Dead and Deactivated Code [XY.QJ ... o ittt 68
6.29 Switch Statements and Static ANalySiS [CLL]......oi i e e e e e 70
6.30 Demarcation of CoNtrol FIOW [EJDJ.......couiiiiiiiiiiie et e e e 72
6.31 Loop Control Variables [TEX].........ooviiiiiiiiiiii e e me e e e aaeeeeas 73
SR A @12 o) YT LT =1] g 1,07 - | PN 74
6.33 Structured Programming [EWD]............uuiiiiiiiiiiierii et e e 76
6.34 Passing Parameters and Return Values [CSJ)o ssime e e e e e e e e e 77
6.35 Dangling References to StaFrames [DCM].........uoiiiii i 79
6.36 Subprogram Signature Mismatch [OTRI...........oooiiiiiiii e 81
LSRG = LYo U £ 1] o TN (7 P 83
6.38 Ignored Error Status and Unhandled EXceptions [QYB].....cccocoiiiiiiiiiiiieieeeiees e eeee e emeeees 84
6.39 Termination Strategy [REUL ..ot e e 86
6.40 Typebreaking Reinterpretation of Data [AMV]........cooooiiiiiii e, 88
LS 1Y/ 1= o Y == 1 2 1 SR 90
6.42 Templates and GENEIICS [SYM]....coiiiiiiiiiiiiiiie it e e e e e e e s s 92
6.43 INNETTANCE [RIP]....ooiiiiiiiieiieeeeeee e e e e e e e e s s ame e e e e e aaeaaaaaaaaaaaaaaaaaeas 94
6.44 EXtra INtriNSICS [LRM]. ... oot e e et e et s s e e e e e s e e eeteaa s e eesennn e eeeeeeenne 95
6.45 Argument Passing to L#amy FUNCLONS [TRJ)........uuiiiiiiiiiiiiiie e 96
6.46 Interlanguage Calling [DJIS].....ccoiiiiiiiiir e e e e e e e e et e e e e e e e et e e e e e eenann 97
6.47 Dynamicallstinked Code and Sethodifying Code [NYY].....oe e 99
6.48 Library Signature [NSQ].......oooiiiiiiiiiiii e ae e e a e 100
6.49 Unanticipated Exceptions from Library Routines [HIW].......cccooooiiriiiiiiic e 102
6.50 Preprocessor DIreCtives [NIMP]o eneenee 103
6.51 Suppression of Languagefined Runtime Checking [MXB]........covvviviiiiiiiiieiieevieiiiiiiiiviniinnnns 105
6.52 Provision of Inherently Unsafe Operations [SKL]..........coiiiiiiiiiiieii i eevimn e e e e 106
6.53 Obscure Language Features [BRS]........ccoiiiiiiiiiii et m e 107
6.54 Unspecified BEhaViOUBIQF].........oooiiiiiiiiiiiii et e sn e e e e as 108
6.55 Undefined Behaviour [EWE]........coo it ees s e et e e e e e e amnn e e e e e e 110
6.56 Implementatiordefined Behaviour [FAB]..........cooiiiiiiii e 111
6.57 Deprecated Language Features [MEMI...........uuuuuiiiiiiiriimiieiecs e ssime e e e e e e e e e e e e e e aaaaeaae s 113

iv © ISQIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 027

7. Application VUINEIabilitIES.........uuuiieiiiee it e e e e e e e e e e e ema e 114
0 R 1= 1= - | 114
A = 11 111 0o] (oo | PP PPPPPPRPPPP 115
7.3 Unspecified FUNCLONAILY [BVQ] . .uuuuriiiiiiiiiiiiiiiieetieisciseee s mr e s emeeaees 115
7.4 Distnguished Values in Data Types [KLKJ.....oooi e 116
7.5 Adherence to Least Privilege [XY.N] ..ot 117
7.6 Privilege SandboXx I1SSUES [XY Q.. .couuuiiiiiii i e e tmr e e e e e e e e e e e e e et re e e eene 118
7.7 Executing or Loading Untrusted Code [XY.S].......uumiiiiiieiiiiiimiiiie e e e e 119
7.8 MEMOTY LOCKING [XZX]..ettteeteeeiiiititte ettt ettt ettt e e e et e e e et e e e e e e e as 120
7.9 ResSoUrce EXNAUSHION [XZB]. ... i i et s emr e s e e e e e e e e e e e e s s emrrena e e e e e s 121
7.10 Unrestricted File Upload [CBE]..........uuuiiiiiiiiiimri ettt e e e 123
7.11 ReS0UICE NAMES [HTS] ..ottt e e e s e e e e e e e s m e e e e e e e e e ns 124
0 A =T 1o o T S 3 125
7.13 CroSSIte SCIPING XY T eiiiiitiieeeiiiite ittt e e e e e e e e e e et e e et e e e e e e aanneees 128
7.14 Unquoted Seah Path or Element [XZQJ......coooiiiiiiiiiii et 131
7.15 Improperly Verified SIgnature [XZR]........ccooriiiiiii et rstn s e e e e e e e 131
7.16 Discrepancy Information Leak [XZL........ccouiiiiiiiiiiiieiee et m e n 132
7.17 Sensitive Information Uncleared Before Use [XZK]............cco i, 133
7.18 Path Traversal [EWR]... ..ot et e e e s e e e e e e et nr e e e e e e e e e raan s 134
7.19 Missing Required CryptographiC StEP [XZS].......uuiiii ittt 136
7.20 Insufficiently Protected CredentialS [XYM]......uuuuurimiiiiiiiiiiiiimn e seessess s ss s ess s sss s sss s ime e e e e e aaeaaaaaaaeaaas 137
7.21 Missirg or Inconsistent Access Control [XZN]......coovruiiiiiii e esres e e e 138
7.22 Authentication LOgIC Error [XZQY.......coeoiiiiiiiiii ettt 138
7.23 Hardcoded Password [XYPR).......coooii e 140
8. NeW VUINErabilities.coo ittt 141
S TR0 =T 1= | 141
8.2 TIMINOIOGY.ccce e e e e i —————— 141
8.3 Concurrency ACIVatioN [CGA].....oiiuiiiiii i e e e e e e e e e e eeat e e e e e e eeeeerenn s eerenes 141
8.4 Concurrency, Directed termination [CGT]. ... it 143
8.5 Concurrent Data ACCESS [CGX] .. uuuuiiimt s e et e et e e e rme e et e amaaeraees 145
8.6 Concurrency Premature Termination [CGS].......coiiiiiiiiiiiii i irceiiiie e e e e e e s emies e e e e e e e eennens 146
8.7 ProtoCOl LOCK EFTOrETIGMIceeiiiiiiiiiiteiit ettt ettt e e et e e e e e e e ame e e e 148
8.8 Inadequately Secure Communication of Shared Resources [CGY]....cccoovviiririiiiioieeeiveeiniiiennn. 150
AnnexA (informative) Vulnerability Taxonomy and ioooiiiiiiiiiiiiiiciee e 152
N R 1= o= - | PP P PP 152
A.2 Outline of Programming Language Vulnerabilities............ccccooii e 152
A.3 Outline of Application Vulnerabilities.............oooi i 154
F N V| T T=T o o111 Y = TSP 154
AnnexB (nformative) Language Specifiéulnerability Template...........ccoooeeiiiiiiiiiiiic 157
AnnexC (nformative) Vulnerability descriptions for the language Ada.............ccccveeeiiiiiiciiiiiiieen 159
C.1 Identification of stadards and associated documentation.............ccccceviiuivimiiiriieiene e 159
C.2 General terminology and CONCERALS.......coiiiiiiiiiii e erre s e e e e e e e e e e e e e e eeannas 159

© ISTIEC2012 ¢ All rights reserved \%

WG 23/N 027 Baseline Edition 2 TR 24772

C.3TYPE SYSIEM [IHN]...eeieeeiieeiieeeeee ettt e e e e e e e e e s e e e e e e e e e e e e e e e s e e s st e e e e e eaeeeeeeaaeeeeeeaeeees 165
C.4 Bit Representation [STR]......cooiiiiiiiiiiiiee ettt ama s snnenme e e e e e e e e e eeaeeeas 165
C.5 Floatingpoint ArtNMETIC [PLF]......uuiiiiiiiiiiiii ittt m et e e ae e e e s 166
C.6 ENUMEratDISSUES [CCBJ....ooiiiiiiiiiii e nr e e e e e e e e e e e e eeeas 166
C.7 Numeric Conversion Errors [FLC]ttt me e 167
C.8 String Termination [CIM]........oouuuiiiiieee ettt e e e s s e et e e e e e s s srme s b e e e e eeas 167
C.9 Buffer Boundary Violation (Buffer Overflow) [HCB].........oouuiiiiiiiiicrcciiie e rere e 168
C.10 Unchecked Array INAeXing [XYZ]........uuuiiiiiiieiiiiimease ettt a e e e e nme 168
C11 Unchecked Array COopYing [XYMV]cuuiieieieeeeiiiiiimiieee et e e et e e et e e e e e e e e e e e s nnnannne 168
C.12 Pointer Casting and Pointer Type Changes [HEC]........oooiii e 168
C.13 Pointer ArthmetiC [RVG].. ...ttt e e e e e e e as 169
C.14 Null Pointer Dereference [XYH]... ..o me e 169
C.15 Dangling Reference to Heap [XYK] ...t e et me e e e e e e e e e e ennnnmas 169
C.16 Arithmetic Wraparound Error [FIE].......ooo i 169
C.17 Using Shift Operations for Multiplication and Division [PIK]............ccccooiiiiiiimiiieieeiieeeeeen 170
(O I] o o I = (=] 4 1S (o] g TN = (o G 1274 | R 170
C.19 Choice of Clear Names [NALL.. ... e e e e e e sme s 170
(ORIl BT To IS (o] (=T KTAT 0, | TR 171
C.22 UNUSEd Variable [YZS] ... oo rmr e s e e e e e e e e eetta e s emraenan e e e eeeeennes 171
C.22 Identifier Name REUSE [YOMV]ouiiiieiiiiiiiiiii ettt et e e e e e s eeameeaeeeas 172
C.23 NamMESPACE ISSUBBIL]......ooiiiiiiiiiiie e ee e atanr e e e e e e e e e e eeeeeas 172
C.24 Initialization of Variables [LAV] ...t s e e e e e e et rme e eetan s s e e e e e e eenaennnnnsmeenees 172
C.25 Operator Precedence/Order of Evaluation [JCMV]ccooiiiiiiiiiiiimiieee e sme e 173
C.26 Sideeffects and Order of Evaluation [SAM]........iiicciie e 173
C.27 Likely Incorrect EXpression [KOAL..... .ot e e e e e e eetime e s ee e s e e e e e e e ennnnan sme s 174
C.28 Dead and Deactivated Code [XYQ .. . ciiiiiiiiiieeee it nr e e e e 175
C.29 Switch Statements and Static ANAlYSIS [CLL]...uuuuuiiiriiiiiiiiiiier e e e 175
C.30 Demarcation of COml FIOW [EOUJ]........couiiiiiiii et e e e tmr e e e e e e e e e e e e e e e eeneans 176
C.31 Loop Control VariableS [TEX]........uuu iiiiaiiiiiiimriiiieiee e e e esemte e e e s st e e e e e e e s s msnseeeees 176
C.32 Offby-0N€ EFTOr [XZHY].....ooeiiiiiiieeeiieeeeeee e e e rme e e e e e e aaaaaaaaaeas 176
C.33 Structured Programming [EWD]........ccooi oo e e e ee et smr et s s e e e e e e e eearenn e e emrenes 177
C.34 Passing Parameters and Return Values [CSd]o it m e 177
C.35 Danglig References to Stack Frames [DCM]........coiiiiiiiiiiiiiiiee st 178
C.36 Subprogram Signature MismatCh [OTR].........oouiiiiiiiiiim e 178
(O A = LTt U (=1 o 1N [5 179
C.38 Ignored Error Status and Unhandled Exceptions [QYB] ... 179
C.39 Termination Strategy [REU]........oo it e e e s 180
C.40 Typéoreaking Reinterpretation of Data [AMV]..........coooiii e 180
L O a1V 1Y g T Y = = 1) 0 181
C.42 Templates and GENEriCS [SYMI.....cooiiiiiiiiiiiie e e e e e 181
C.A3 INNEMTANCE [RIP....oiiiiiiiiieiiieieee it e mr e e e e e e e s e e e e e e e e e e e e e e e e e e samteeaeeeeeeeeeeeaeeeeaeeeeees 182
C.44 EXtra INtriNSICS [LRIM]...cciiiiiii it s e e s e e e e e e e e e et s e e e emeeannneeeaeeeennnnn 182
C.45 Argument Passing to Library FUNCHONS [TRJIJ......ooiiiiiiiiiiiiiieiieceeee e m e 182
C.46 Inteflanguage Calling [DJS] .. .uuuuuriiiiiiiiireiieriimraeess e s rme e e e e e e e e e e e e e e e e e e eeaaeeaaesameeeeeeeaeees 183

Vi © ISQIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 027

C.47 Dynamicallinked Code and Selhodifying Code [NYY]......cooooiiiiii 183
C.48 Library SIignature [NSQJuu ittt e e et e e e e e e e s ans e e e e e e e e e aaes 183
C.49 Unanticipated Exceptions from Library Routines [HIW]........coooiiiiiiiiiiiimieieecce e 183
C.50 PreProcessor DIreCtives [NMP.......ooooiiiiiiiiiiiee e e s e e 184
C.51 Suppression of Languadefined Runrtime Checking [MXB]...........ooooiiiiiiiiiiiiicieeeceeeee 184
C.52 Provision of Inherently Unsafe Operations [SKL].........ooouiiiiiiiiiiieiiieecee s 184
C.53 Obscure Language Features [BRS]..........oiiiiii e esrrn et aes 185
C.54 Unspecified Behaviour [BQE]........ccouiiiiiiiiiie it m et e e e e e e 185
C.55 Undefined BEhaviour [EVWE].........ooo et ame e e 186
C.56 ImplementatiorDefined Behaviour [FAB]..........ouiiiii e eerer e 187
C.57 Deprecated Language Features [MEMY]..........oou it 188
C.58 Implications for StaNArdiZAtION............coiiiiiiiiiii e e e e e 188
AnnexD (nformative) Vulnerability descriptions for the language.C...............c.ccciiiriieiiiiiviveeeeeee, 190
D.1 Identification of standards and associated dOCUMENTS..........cooiiiiiiiiiiiimiee e e 190
D.2 General terminology and CONCEALSuuuiiiiiiiiiiiiii et e e e e e e e ime s e e e e s e e e 190
[RGB Y/ oI V21 (=T T 1 193
D.4 Bit Representations [STRY.......cccuiiiiiiiieiiiiiee ittt e e e e e e e e e e me e e aeeas 194
D.5 Floatingpoint ArithmetiC [PLE].........ooiiiiii e ne e 195
D.6 ENUMErAtOr ISSUES [CCBI....cuiiiiiiiii it e ettt s e e e e e e e ettt i e e et e e e e e e e e e eeaann s smreaenanan e e eeeees 196
D.7 Numeric Conversion Errors [FLC]... ... 197
D.8 String Termination [CIM]......cooiiiiiiiiiiiieee e rmr e e e e e e aaeaaaaeeas 199
D.9 Buffer Boundary Violation (Buffer Overflow) [BE..........cooviiiiiiiree e 199
D.10 Unchecked Array INAeXing [XY.Z]......ccuuueeiiiieeiiiiimei et emr et e e e e e anne 201
D.11 Unchecked Array Copying [XYMU e s s ee s e s s s s s s s s s s s s i e e e e e e e e e e aaaaaaaaaaaaaaaaaaanaes 201
D.12 Pointer Casting and Pointer Type Changes [HEC].......cccooi e 202
D.13 Pointer AritNMELiC [RVG]........uiiiiiiiiieeiii ettt e e e e e e ama e e e e e e as 202
D.14 Null Pointe Dereference [XYH].....ooooi e 203
D.15 Dangling Reference t0 Heap [XY K] . ..o it e e e e e e e e nna s 203
D.16 Arithmetic Wraparound Error [FIE]........ooiiiiiiiiiiieee et 205
D.17 Using Shift Operations for Multiplication and Division [PIK]........cccoooiiiiiiiiiiiin e, 206
DS I T | W ot = 0 FT o = (o] g 974 | PP 206
D.19 Choice of Clear Names [NALL......c.uuiiiiiiiee e e e m e 206
D2 O B L= Vo IR (] (N AT | 207
D.21 UNUSEA Valiable [YZS] ... et e s e e s ama e e e aaaaaaaaaaaaens 207
D.22 Identifier Name REUSE [YOWcooiiiiiiiiiiiii ettt e s nne e e e e e 207
D.23 NamesPace ISSUES [BuL]......uuuuiiiii it e e e e ettt me e e e e et s s e e e e e e e e e e e anme e e e e eeennn e as 208
D.24Initialization of Variables [LAV] ..o 208
D.25 Operator Precedence/Order of Evaluation [JCW]........ccooiiiiiiiiiiiiiime e 209
D.26 Sideeffects and Order of EVAAION [SAMI].....cuuuiiiii v e e e e e 209
D.27 Likely Incorrect EXPression [KQALo ittt sm e e 210
D.28 Dead and Deactivated Code [XY.Q] .. cuuiiiiiiiieiieiiiieeieriiiiiinniiniriarrererener e sasssse s s ames 211
D.29 Switch Statements and Static ANalySiS [CLL]......coiir i e 212
D.30 Demarcation of Control FIOW [EOQJ].......ccoiiiiiiiiiiii et 213

© ISTIEC2012 ¢ All rights reserved Vii

WG 23/N 027 Baseline Edition 2 TR 24772

D.31 Loop Control Variables [TEX]....ccooooiioi oottt eee e 214
D.32 OffDy-0Nn€ EITOr [XZH] ..ottt am e 215
D.33 Structured Programming [EWD].......ccccoiiiiiiiiiiiiiimieee ettt m e eme e 215
D.34 Passing Parameters and Return Values [CSJ].........oooooiiiiiii e 216
D.35 Dangling References to Stack Frames [DCM]........ccuuiiiiiiiiiii s 217
D.36 Subprogram Signature MiSmatCh [OTR]......ccoiiiiiiiiiiiiiie i 217
R A L= Yo =3 o I 7 I 218
D.38 Ignored Error Status and Uni@led EXCeptions [OYB].......couiiiiiiiiiiiiiiiineeeee e 218
D.39 Termination Strategy [REU........coooi e eme e e 219
D.40 Typebreaking Reinterpretation of Data [AMV].......ccoo oo 219
D.41 MEMOTY LEAK PXY L ittt ettt ettt e e e e e e ema e e e e e e e e e ne s 220
D.42 Templates and GeneriCS [SYMI... ..o eneee s 220
[Y =T =T o = | P 220
D.44 EXtra INtriNSICS [LRIM]....ciiiiiiiiiiei ittt e e e e e s e e e e eeeas 220
D.45 Argument Passing to Library FUNCHONS [TRIJ......coiiiiiiiiiiee s 221
D.46 Interlanguage Calling [DJIS]......cuuuuiiiiiii e s e e e e e e e etmr e e e e e e s e e e e e e e eettrnme e e e eeennas 221
D.47 Dynamicalljfinked Code and Selhodifying Code [NY Y] ... 221
D.48 Library Signature [NSQ]........uuuuuuiertiiitiiitiimieeeeessesssss s s ss s s s s s s s s s s s imeaaaaaaaaaaaaaaaaaaaaaaaaaeesamarerereereeeeees 222
D.49 Unanticipated Exceptions from Library Routines [HIMW]........cooouiiiiii e 222
D.50 Preprocessor DIBCHIVES [NIMP].......u ittt e e 223
D.51 Suppression of Languagefined Runtime Checking [MXB].............ccccccii i, 224
D.52 Provision of Inherently Unsafe Operati®fiSKL..........ccooooiiiiiiiiiiiiie e 224
D.53 Obscure Language Features [BRS]..........cuii it e e e 224
D.54 Unspecified Behaviour [BOQE].........uuuuiuiiiiiiiiiimi et a e amaaaeaaes 225
D.55 Undefined Behaviour [EWE]........uu i ttmr e e e ettt s s e e e e e e e e eatanme e e e eeennes 225
D.56 Implementationdefined Behaviour [FABI............ooiiiiieiie e 226
D.57 Deprecated Layjuage Features [MEM].........coooiiiiiiiiiiii e 226
D.58 Implications for standardization..............cuuiiii e e 227
AnnexE (nformative) Vulnerability descriptions for the langage Python.............cccccccooiiiiiimiiiiinnnen. 230
E.1 Identification of standards and associated dOCUMENLS.............coevieiiiiiiimniiiiiiieee e 230
E.2GeneralTerminology and CONCEPLS.....iiiiiiiiiiiiiie et er e s e e e e e e e e e s emre s s e e e s e e e e aeab e e e e e e e eeeenas 231
E.3 Type SYSIEM [THNeeiiiiiiiiiitie et e e e e e e e e e e et e e e e et r e e e e e e e e e anee 235
E.4 Bit Representations [STRY........ccoiiiiiiiiii e e e rsr e e e e e e e et s e e e e e e emsa s e e eeeeeeerenns 237
E.5 Floatingpoint ArtNMELIC [PLE]........u et eeeeeees 238
E.6 ENUMErator ISSUES [CCBY... ..ottt ettt et e e e e e e enr e nnernnes 238
E.7 Numeric Conversion EIrors [FLC] ... e eeter e e e ranr e 239
E.8 String Termination [CIMY]ottt et et e e et e e e e e e e eenee et ennennnennees 240
E.9 Buffer Boundary Violation [HCBJ..........ooiiiiiiiiiiiii et e annmn e 240
E.10 Unchecked Arraydexing [XY Z] ...ttt e e eme s e e e e e e e e et s e e e e e e e amn s 240
E.11 Unchecked Array Copying [XYMV].. .ottt mit et e e e e e e e s 240
E.12 Pointer Casting and Pointer Type Changes [HEC].......ovviiiiiiiiiiiiicmr e 240
E.13 Pointer ArithmetiC [RVG]... ..ot e e et s e e e e e e e et s e e e e s am s neeeeeeeeenes 240
E.14 Null Pointer Dereference [XYH] e eee e 240

viii © ISAIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 027

E.15Dangling Reference to Heap [XYK].....o e e e e s ne e 240
E.16 Arithmetic Wraparound Error [FIF]........oooo et m 241
E.17 Using Shift Operations for Multiplicaticand DivisSion [PIK]..........cccuvviiiiiiiiiiiiiiecee e 241
E.18 Sign EXtension Error [XZL].........ooo ot 241
E.19 Choice of Clear Names [NALL......c it e e m s 241
E.20 Dead StOre [WXQY eiiieiiieee e iitim ettt e et e e e e e sttt e e e e e e et ma e e e e e e e e e b e 243
E.22 Unused Variable [YZS]ot eme et e e e e e e e et s e e emra e e e e e eeenne 244
E.22 Identifier Name REUSE [YOWV]......uu ittt me et e e emr e e e e s 244
E.23 NamMeSPACE ISSUES [BIL]....ciiiiiiiiiiiiiiiiii ettt m et e e e e et e e e e e e 246
E.24 Initialization of Variables [LAV].......coo oot emet s s e e e e e e e e aaaa e e e e s emrenaaas 249
E.25 Operator Precedence/Order of Evaluation [JCM]........cccoiiiiiiiiiiimiieieee e 249
E.26 Sideeffects and Order of Evaluation [SAMY]........coocuiiiiiiiie e 250
E.27 Likelyncorrect EXPresSion [KOAL i s e e e e e e et s s s eme et s s e e e e e e e eeanenn e e e eemrens 251
E.28 Dead and Deactivated Code [XY.QJ uiiiiiiiiiiiiiiiinee et srme e e e e 252
E.29 Switch Statements and Static ANAlYSIS [CLL]........uuuiiiiiiiiiiie e 253
E.30 Demarcation of Control FIOW [EQJ].........oii it e e e e e e 253
E.31 Loop Control Variables [TEX].........c.uuuiiiiieiiiiimiii et e e e m s 254
E.32 OffbY-0N€ EFTOr [XZH]oeeeeiieeiiieiieeeeee e s e e e s e e s s s e e s s e e s s e nsma e e e aaaaaaaaaaaaaas 255
E.33 Structured Programming [EWD]...... oo e et sme e s s e e e e e e e eeaan e emernne 255
E.34 Passing Parameters and Return ValUBSJ]..........ccuvveiiiiieiiimiiieee et 256
E.35 Dangling References to Stack Frames [DCM]........uuuiiiiiiiiiiiiimieiciccs e ime e e 258
E.36 Subprogram Signature MismatCh [OTR].........coouiiiiiiii s 258
E.37 RECUISION [GDL]....cciiiiiiiiiiiti ittt ei ettt e e e e e e et e e e e s ame e e e r e e e e e e e e annnnees 258
E.38 Ignored Error Status and Unhandled Exceptions [QYB].........ccccoooiiiiiiicee 258
E39 Termination Strategy [REU]......ccoo oo eter e e e e s e e e e e e e e aarme e e e e eenenes 259
E.40 Typébreaking Reinterpretation of Data [AMV].......coooiiiiiiiiiieeiie e 259
E.4L MemMOry Leak [XY L. e nr e e e e e e e e e e e e e e e e aaaeeas 259
E.42 Templates and GeNEriCS [SYM] .. .o oo eemrr e e e e e e e e e e e s emran s 260
E.43 INNETANCE [RIP] ...ttt e et et e e e e e s e e e e e e e e e nbbeee s 260
E.44 EXIrANtriNSICS [LRMY].....euiiiii it s e e e it e e e e e et e e e e e e e e e e e ee e e e e e e s amabassaesareesrenrees 260
E.45 Argument Passing to Library FUNCONS [TR]....ccoi i 261
E.46 Interlanguage Calling [DJS]......cooiiiiiiiiiiiiie ettt e e e e ame e 261
E.47 Dynamicaliinked Code and Selhodifying Code [NYY]....ooooiiiiiiiiiiiee e 262
E.48 Library Signature [NSQJ....coueeiiiiiiiiiiieee ittt me s e e s s e e s e e e e e e s e e e e e e e ame e e aaaaaaaaaeaens 262
E.49 Unanticipated Exceptions from Library Routines [HIMW].......cccoooeiiiiiiiiiiie e, 263
E.50 Preprocessor DIreCtiveS [NMP]......uu ettt s smr s s e e e e e e e eeaeea e e e emenenes 263
E.51 Suppession of Languagdefined Runtime Checking [MXB]............cevviiiiiiiiiiimiieeeee e 263
E.52 Provision of Inherently Unsafe Operations [SKL]......cccoooiiiiiiiiiiiiic e, 263
E.53 Obscure Lguage Features [BRS].......ciii i ties s e e ee et emr et s s e e e e e e e eesaannn e e e emees 264
E.54 Unspecified Behaviour [BQE]...........oiiiiiiiiiimiiiii ettt enrre e 266
E.55 Undefined Behaviour [EWE]..........uuiiiiiiiiiers sttt rmee e e e e e e e e e e e e e e aaa e e e e e e s amaeeeeeeeees 267
E.56 Implementatiogdefined Behaviour [FAB]......cccooo it eemrns e e e e e e eennens 268
E.57 Deprecated Language Features [MEMY]...........oouiiiiiiiiii e 269

© ISTIEC2012¢ All rights reserved iX

WG 23/N 027 Baseline Edition 2 TR 24772

Annex F {nformative) Vulnerability descriptions for the language Ruhy....................oooiiic, 270
F.1 Identification of standards and associated dOCUMENLS............uuuuueriimmimimiaaaaaaeaaee e 270
F.2 General Terminology and CONCEPLS........uuuiiiiiieiiaiiieri it e e e e e et e e e e et e e e s ib e e e e e e s s aaneeanes 270
F.3Type System [IHIN] ... et e e 271
F.4 Bit Representations [STRY.......u e r e e et e e e e e 272
F.5 Floatingpoint ArithmMetiC [PLF].....coooi oot e e e e e e 273
F.6 ENUMErator ISSUES [CCBI... .ot emt s e e e e e e e et e e e e e e emrnnn s e e e e e eeeenes 273
F.7 Numeric QVersion Errors [FLC].... ... i it ettt e e e enee e 274
F.8 String Termination [CIMI.........ue it r e e e e e e e bbb enr e e e e e e e e e annne 274
F.9 Buffer Boundary Violation (Buffer Overflow) [HCB]........ccooiiiiiiiiiiiie e eeeeevtme e 274
F.10 Unchecked Array INAdeXing [XY.Z]......oouoo ittt e 274
F.11 Unchecked Array Copying PXY MU .ottt mi e e e e e e s 274
F.12 Pointer Casting and Pointer Type Changes [HEC]........ccoo i, 274
F.13 Pointer ArithmetiC [RVG]......oooi ittt e e s e 275
F.14 Null Pointer DereferenCe PXYH e enee e 275
F.15 Dangling Reference to Heap XY K] esie e e e e e e eeeas 275
F.16 Arithmetic Wraparound Error [FIE]..... ... e 275
F.17 Using Shift Operations for Multiplication and Division [PIK].........ccccccciiiiiiiieeeeeeeeeeeeeee 275
F.18 Sign EXIENSION ETOF [XZI]...uuuii et seme et s e e e e e e e e et s e e s emrann e e e e e e e 275
F.19 Choice of Clear Names [NALo oot e e e e e e e e e e 275
F.20 Dead Store [WXQY uuueuueiuurieetiiititimnssaesseesseessss s s s ss s ss s s s s imeaeaaaaaaaaaaaaaaaaaaaaaaaaaesmtereeeeeseeeeeeeeereeeeees 276
e R U o TU Y=o AV T =1 o LT 272 276
F.22 Identifier Name ReUSE [YOW].....ccoi ittt mi et e e e e e e e e e e e 276
F.23 NameSPace ISSUES [BIL]... ..ottt e eer e 277
F.24 Initialization ofVariables [LAV]......coo et e e e e e e e e e e 277
F.25 Operator Precedence/Order of Evaluation [JCW].........ccuviiiiiiieiii e 277
F.26 Sideeffects and Order of Evaluation [SAMY]........coooiiiiiiiiii e 278
F.27 Likely Incorrect EXpression [KQAL. ... e e e e e e e e e e e e e aeaee s 279
F.28 Dead and Deactivated Code XY ... uuuriiiieeiiiiiimiiiie e e e e e e s e e e et e e e e e e e e e e s snneeanes 279
F.29 Switch Statements and Static ANalysiS [CLL].........ooiiiiiiiiiiii e 280
F.30 Demarcation of Control FIOW [EQJ].......cccoriiiiiiiiii it e s esrn s e e e e e e e e e e e e e e 280
F.31 LoOp CArOl VariablesS [TEX]uuueeaiiiiiiiieieee ettt e s simis e e e e e e e e s ssbbn e e e e e e s s e e e annes 280
G Y @ o) Yo T o oI =1 (] g 1, 07 - | S 280
F.33 Structured Programming [EWD]........coooiiiiiiiiiiiii et me s 281
F.34 Passing Parameters and Return Values [CSJ]........cooviiiiiiiiiiceeeeeeeeeeeee e 281
F.35 Dangling References to Stack Frames [DCM].......ooouuviiiiiic e vse e e e e eeaeens 282
F.36 Subprogram Signature Mismatch [OTR]........coooiiiiiiiiiiee e 282
F.37 RECUISION [GDL]...oiiiiiiiiiiiiie e e s mr e e e e e e e e e e e e e e aaeeaaaeaeeeas 283
F.38 Ignored Error Status and Unhandled EXCeptidDEB]........ccovvvriiiiiii e 283
F.39 Termination Strategy [RE].......ouiriiiiiiii et ene e e 283
F.40 Typebreaking Reinterpretation of Data [AMV]......uueuieriiiiiiiiiiieiisiernr e 283
V=T o o Y I 1 1 T 283
F.42 Templates and GENErICS [SY.IM]......uuiiiiiiiieiiiieii e e e e e e 284
F.A3 INheritance [RIP].....ccooi oottt et e e 284

X © ISQIEC2012¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 027

F.44 EXtra INtriNSICS [LRIM]. .. et rme e e et e e e et e e et e e et e e e e e e e amsaaeesaasaressrennees 284
F.45 Argument Passing to Library FUNCLONS [TRIJ.......uuuiiuiiiiiiiiiiimiaaaeeieeeree e e 284
F.46 Intelanguage CalliNg [DJS]... . eueeeiiiiiiriieiiie ettt e e e e e e e e s s e e e amr e e e e e e aaane 284
F.47 Dynamicaliinked Code and Selhodifying Code [NYY].......uuuiiiiiiiiiiiiiiiiiriereccccceceese e 285
F.48 Ldrary Signature [NSQJ e ieeiiiiiiiiiiii ettt e e e e e e e e e e et e et e e e e e e s nnnnne s 285
F.49 Unanticipated Exceptions from Library Routines [HIW]............oooeiiiiiiiiiiiiiie e 285
F.50 Preprocessor DIireCtiveS [NIMIP.....ouu et sme et s s e e e e e e e eeaanan e e emrrenes 285
F.51 Suppression of Languadefined Runtime Checking [MXB]........cccuvviiiiiiiiiiiimeeeee e 286
F.52 Provision of Inherently Unsafe Operations [SKL]...........ccuiiiiiimiiiiiiieee e 286
F.53 Obscure Language Features [BRS].........ccooriiiiiiiiir it e e e e e e e e e e emees 286
F.54 Unspecified Behaviour [BQEL..........uiiiiiiiiiitimie et emrne e 286
F.55 Undefined Behaviour [EWE]........ooo ittt e e rme e 286
F.56 Implementatiordefined Behaviour [FAB].......coooi oo e e e e e e eeeenes 287
F.57 Deprecated Language Features IE............coooiiiiiiiiee e 287
AnnexG (nformative) Vulnerability descriptions for the language SPARKcooiiiiiiiiniiieee e 288
G.1 Identification of standards and associ@@locumentation............cccooooiiiiiiiiiiin e, 288
G.2 General terminology and CONCEPIS........oiiuiiiiiiiieee ettt e e enr e e e e e e e e e e e ame s 288
G.3Type SYstem [IHN] ... e 289
G.4 Bit Representation [STR].......ccciiiiiiiiis s csiie s e e et s e e e e e s emree s s s e e e e e e e eaaa s s e e e e e esamrseeeeeeeeessnnns 290
G.5 Floatingpoint ArtNMEtIC [PLF].......coo et e e 290
G.6 ENUMErAtOr ISSUES [CCB....uuiiiii ettt e e et e e e e e e e e e e e am e aeareeeaeeeees 290
G.7 Numeric Conversion Errors [FLC]. ..ot mr e e e e e e e e e rannme e 290
G.8 String Termination [CIMI.........u it e et e e e e e e e ama e e e e e e eeeens 290
G.9 Buffer Boundary Violation (Buffer Overflow) [HCB]..............coo oo, 290
G.10 Unchecked Array INdeXing [XY.Z].......oouuiiiiiie oo e e et er e e e e et s e e e e e e eeaenane e 290
G.11 Unchecked Arra@opYing [XYWW] ... e oottt e e e e e 290
G.12 Pointer Casting and Pointer Type Changes [HEC]...........ooooiiiiiiiciieeeeeeveeevse e 291
G.13 Pointer ArthMEIC [RVG] . ..uuui i et eette s e e e e et r s e e s emra s e s e e e e e e e teaa s e e e e s s emra s e eeeeeeenes 291
G.14 Null Pointer Dereference [XYH]o e 291
G.15 Dangling Reference to Heap [XYK] ... 291
G.16 Arithmetic Wraparound Error [FIR].ot e e e e e e e e e e 291
G.17 Using Shift Operations for Multiplication and DiviSion [PLK]..........cccuuiiiiiiiiiiciiiiieeeee e 291
ORI (o I bt =] 1 T A o] 1,07 | 291
G.19 Choice of Clear Names [NAI]......oooi i eme e 291
G.20 DEAd StOIE [WWXQ]: ... uutiuuuieuiiiuiittmr e e e e e s e e e e e et e e e s e e e e e e e s e e s st e e e eeeaaaaeaeaeeaaaaaaeaaaesamsssesssenssnnssanssnnnens 291
G.21 UNUSEd Variable [YZS]... .ottt e e e e s e e e e e e e s e e e e e s emra s e e e e e e eeeerneas 292
G.22 Identifier Name REUSE [YOWV].....uu i uuiieiiiiitiititiee e e e e ea s aes e s e s e ame e e e e e e e e e e e e aaaaaaaeaeaaaeeaeeeeeeeas 292
G.23 NamMESPACE ISSUES [BIL] ...ttt e e e e e e e e e e e e e e e e amaaaraaarsreeeees 292
G.24 Initialization of VariablesS [LAV] ... et er e e e e e e e e e e 292
G.25 Operator Precedence/Order of Evaluation [JCW]..........ooviiiiiiiiiimiiiiieeeee e 292
G.26 Sideeffects and Order of Evaluation [SAMI]..........oooviiiiiiiiiiii e e 292
G.27 Likely Incorrect EXPression [KQA]L ... i e e eeie s e e e e et e e e e e e e aeas 292
G.28 Ded and Deactivated Code XY Q.. ..oiuuiiiiiiiieeeiiiimriiti et e e e e e e e e e e 292

© ISTIEC2012¢ All rights reserved Xi

WG 23/N 027 Baseline Edition 2 TR 24772

G.29 Switch Statements and Static ANalySiS [CLL]....uuuuiiiiiiiiiiiiiere i 293
G.30 Demarcation of Control FIOW [EQJ].......ccoiiiiiiiie e 293
G.31 Loop Control Variables [TEX]........uuiiiiiiiiiiiimiite et e s 293
G.32 OFffbY-0N€ EXTOr [XZH]...ooiieiiiiiieeeieeeeeee e e e rme e e e e e e aaaaaaaaaaas 293
G.33 Structured Programming [EWD)]...........ouiiiiiiiiiii et 293
G.34 Passing Parameters and Return Values [CSJ]......ccooiiiiiiiiiiieiiiiee et m e 293
G.35 Dangling References to SkaFrames [DCMI].......ouuiiiiii i 294
G.36 Subprogram Signature MiSmatCh [OTR].........euiiiiiiiiiiiiimi e 294
G.37 RECUISION [GDL]...c ittt ettt ettt e e e e e e ettt e e e e e e s s ame e bbb e e e e e e e e e nnaneees 294
G.38 Ignored Error Status and Unhandled Exceptions [QYB].........ccooovviiiciiieiiiien e 294
G.39 Termination Strategy [REUL...........ouiiiiiieiiie e me s 294
G.40Typebreaking Reinterpretation of Data [AMV]........cuuiiiiiiiiiiiieri e 295
LI 5 Y =T 0 0 To YA =TT 1) 2 295
G.42 Templates and GenEriCS [SYMI.....coo i 295
G.43 INNEMTANCE [RIP] ...ttt e e e e e s e e bbb et e e e e e e e nnnbeee e 295
G.44 EXra INtriNSICS [LRM]..ceiiiiiiii it e e e et s s e s e e e e e e s e eeetana e e e emeananeeeaeeeennnnns 295
G.45 Argument Passg to Library FUNCIONS [TRJ]......cuuiiiiiiiiiiiiiieeec e m e 295
G.46 Interlanguage Calling [DJIS].....coviiiiiiiiiiiiiieee e —————an 295
G.47 Dynamicallinked Code and Selinodifying Code [NY].....cooriiiiiiiii e 296
G.48 Library Signature [NSQI........ooeiiiiiieeee ettt e e e e e 296
G.49 Unanticipated Exceptions from Library Routines [HIM]..........uuviiiiiiiiiiiimieieicecccceceeceeeceeee e 296
G.50 PreProcessor DireCtiveS [NIMP.......u it s s e e e e ettt s smr e s s e e e e e e e eeatenn e e e emrnnes 296
G.51 Suppression of Languadefined Runtime Checking [MXB]...........ccoouiiiiiiiiiiimiieeeeeieeeeeen 296
G.52 Provision of Inherently Unsafe Operations [SKL]......ccccoiiiiiiiiiiiiiioe e, 296
G.53 Obscure Language Features [BRS].......cciiii ittt s e e e e e eeetme e s e et e e e e e e e e ennnnnas 296
G.54 Unspecifid Behaviour [BQREL.........uueiiiiiiiiiiiii ettt e e e emreeeeeees 297
G.55 Undefined BEhaVioUur [EWE]........ooiiiiiiiiiiieiiceceiiii e snimneeaaaeaaas 297
G.56 ImplementationDefined Behaviour [FAB].......ccooi i et e e e e eeanees 297
G.57 Deprecated Language Features [MEM]...........uuiiiiiiiiiiiiiie et 297
G.58 Implications for StandardiZAtiON...............uuuuiiiiiiiiiie 297
AnnexH (nformative) Vulnerability descriptions for the language PHRP.........ccccccoooiii e, 298
H.1 Identification of standards and associated doCUMENTALION.........ccoviieiiiiiiirimiiieiee e 298
H.2 General Terminology and CONCEPLS.......ccueiiiieiiiiii e e e cmies e e e e e e e s e e e s emra e e e e e e e e eearnnn e eeeeeeens 299
TG T IV o T IS A1 (= 1 PSSP 300
H.4 Bit REPreSENtatioNS [STR]uuuuuiuiiiiiiieiiitiiimrieesssess s s rmr e e s e e e e e e e e aaaaaaaeeaaeeaaesamraeaeeeeeeeeeess 301
H.5 Floatingpoint Arithmetic [PLF].......oooeiii et e e s e e e e e e e e e e e e e eeees 302
(WOl =t a1 g [T = o gl [T 1= TS [= 302
H.7 Numeric Conversion Errors [FLC.......coooviiiiiiiiiiiii e e nnasn e 303
H.8 String Termination [CIM]........cooiiiiiiie e e e e e e e e e e et s s e e e e e e emraseeeeeeeennenns 304
H.9 Buffer Boundary Violation (Buffer Overflow) [HCB]..........oouiiiiiiiiiiimiiiieeeee e 305
H.10 Unchecked Array INdeXiNg [XYZ]......ccooi ittt e nnnan s 305
H.11 Unchecked Array Copying [XY MV ... eer s e e e e e e e e e e e anae s 305
H.12 Pointer Casting and Pointer Type Changes [HEC]........ccuiiiiiiiiiiee i 305

Xii © ISAIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 027

H.13 Pointer Arithmetic [RVG]......ccoooii e e e 305
H.14 Null Pointer DereferenCR Y H ..o e 306
H.15 Dangling Reference to Heap XY K]cou et m e 306
H.16 Arithmetic Wraparound Error [FIE]........oooiiiiiiiii et e 306
H.17 Using Shift Operations for Multiplication and Division [PIK]...........ccoiiiimiiiieeeeiiee 307
H.18 Sign EXIENSION EITOr [XZI].....uiiiiiiiieiiiiiieie ettt rme et e e e e e amr e e e e e e e e e e 308
H.19 Choice of Clear Names [NAL ... et e e e e e e e e errmr e e e eeeenes 308
H.20 Dead StOre [WXQY eeeeeeeeeeiiiiiieee ettt e ettt e e e s ame et e e e e e e e e e eme ettt e e e e e e eeeeeas 309
H.21 Unused Variable [YZS].... ..o ettt e enr e e e e e e e 310
H.22 Identifier Name REUSE [YOW ... oot e e em s e e e e e e et e e e e e e e e emnn e e e e e 310
H.23 NameSPace ISSUES [BUL]......cooiiiiiiiiiiie it e e e 311
H.24 Initializatian of VariableS [LAV]......coo ettt e e ame e 312
H.25 Operator Precedence/Order of Evaluation [JCW]..........oeiiiiiiiiiiien e eeeevme e eeee 312
H.26 Sideeffects and Order of Evaluation [SAMI..........ccuiiimiiiieiiiiie e 313
H.27 Likely Incorrect EXPression [KQALo ittt smr e e e 314
H.28 Dead and Deactivated Code [XY.Q. ...t e e et rmr e e e e e e e e eeeennnn s 315
H.29 Switch Statements and Static ANalysiS [CLL]........uiiiiiiiiiim e 316
H.30 Demarcation of Control FIOW [EQJ].........cooiiiiiiiiiiiii et e s 316
H.31 Lo@ Control Variables [TEX]......coc it e e e e e s s e e e e e e e et e s s e e e e e eeamr e e e e e e e 317
H.32 Offhy-0N€ EFTOr [XZHI.....eeeiieeeeiei et amt e e e e 317
H.33 Structured Programming [EWD)]........ccoiiiiiiiiiiiiieiiie e 318
H.34 Passing Parameters and Return Values [CSJ].. ..ot 319
H.35 Dangling References to Stack Frames [DCM].......oooiiiiiiiiiiiimieieeee e 319
H.36 Subprogram Signature MismatCh [OTR].........uuuiiiiiiiiiiiiimrics e e e e e e e e e e e e e 319
[IR A LYol =3 o I 7 1 PP 320
H.38 Ignored Error Status and Unhandled EXCEPE [OYB]........coooiiiiiiiiiieiii e 320
H.39 Termination Strategy [REU]........uuiiiiiiiiee sttt e e e e e e e e e e 321
H.40 Typebreaking Reinterpretation of Data [AMV].......oooiiiiii e e eeer e e eeaeeen 322
H.41 MEMOIY LEAK PXY L] etttiieiiiiitite ittt ettt et e e e e e sttt e e e e e s ame e s ettt e e e e e e e e e ans 322
H.42 Templates and Generics [SY.M] ... 322
[I oY =T = T Lot | | 323
H.44 EXtra INtriNSICS [LRIMI. ...ttt e e e e e e e s mas e e e e e e e e e ane 323
H.45 Argument Passing to Library FUNCLIONS [TRJ].......cciiiiiiiiiiiiime e 323
H.46 Interlanguage Calling [DJIS]........uuuuuuuuiiiiiieiiiimae e e e e e ae e e e e e e e e e e e aaaaaaaaaaaaaaeaeameeeeeeeees 323
H.47 Dynamicallfinked Code and Selnodifying Code [NYY]......uuuiiiiiiiiiiiiiiiiiriereiscccseessse s 324
H.48 Library Signature [NSQI.....ccuuuuiiiiiiiiiiiieiiiir st s s e e e e e ettt me e e e e e et s e e e e e e eeeeaeeanme e e eereennnneees 324
H.49 Unanticipated Exceptions from Library Routines [HIW]..........uuuieiiimiiimiimniiasiaaeeeeeeeeeee e 324
H.50 Preprocessor DireCtives [NIMP]......cooo oo 325
H.51 Suppression of Ruime ChecKing [MXB]... ..o e e e e e e eeenes 325
H.52 Provision of Inherently Unsafe Operations [SKL]..........cccouiiiiiiimiiiieee e 325
H.53 Obscure Language Features [BRS].........uuuiiiiiiiiiiiieieeccccs e rimr e e e e e e e e 325
H.54 Unspecified Behaviour [BQE]......ccooiiriiiiii e emrs s e e e e e e e e e mn e e e e 326
H.55Undefined BEhavioUur [EWREL.........oeiiiie et 327
H.56 Implementatiorgdefined Behaviour [FAB]........ccooooii i 328

© ISTIEC2012 ¢ All rights reserved Xiii

WG 23/N 027 Baseline Edition 2 TR 24772

H.57 Deprecated Language Features [MEM].......ccoooiiiiiiiiiiiiiice e 328
2]][ToT | £= 0] 0/ 329
T 1= 332
Xiv

© ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772 WG 23/N 027

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnica
Commission) form the specialized system for worldwide standardization. National bodies that are members c
ISO or IEC participate in the development of International Standards through technical committees establishe
by the respective organization to deaith particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and non
governmental, in liaison with ISO and IEC, also take part in the work. fielthef information technology, ISO
and IEC have established a joint technical committee, ISONEC

International Standards are drafted in accordance with the rules given in the 1SQifdeGves, Pard.

Attention is drawn to the possibility thatome of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEQ'R24772, which is a Technical Report, was prepared by Joint Technical Committe€IFQL,
Information technologySubcommittee S22, Programming languages, their environmeatsd system
software interfaces

© ISTIEC2012 ¢ All rights reserved XV

WG 23/N 027 Baseline Edition 2 TR 24772

Introduction

All programming languages contain constructs thii incompletely specifiedxhibit undefined behaviar,
areimplementationdependent, or are difficult to use correctlilhe use of those constructs may therefore
give rise tovulnerabilities as a result of which, software programs can execute differently than intended by
the writer. In some cases, these vulnéilities cancompromise the safety of a systemtwg exploited by
attackers to compromise the security privacy of a system.

This Technical Report is intended to provide guidance spanning multiple programming languages, so that
application developers wibe better able to avoid the programming constructs that lead to vulnerabilities in
software written in their chosen langua@ed their attendant consequences. This guidance can also be
used by developers to select source code evaluation tools that isgowker and eliminate some constructs
that could lead to vulnerabilities in their softwaoe to select a programming language that avoids
anticipated problems

It should be noted that this Technical Report is inherently incomplitis. not possible t@rovide a

complete list of programming language vulnerabilities because new weaknesses are discovered continually.
Any such report can only describe those that have been found, characterized, and determined to have
sufficient probability and consequence.

Furthermore to focus its limited resources, the working group developing this report decided to defer
comprehensivdareatment of several subject areas until future editions of the repdmese subject areas
include:

1 Objectoriented language feature@lthoughsome simple issues related to inheritance are
described ir6.43 Inheritance/RP))

1 Numerical analysis (although some simple items regarding the use of floating ppidéscribed in
6.5 Floatingpoint Arithmetic[PLF)

1 Inter-language operability

XVi © ISAIEC2012 ¢ All rights reserve

Technical Report Baseline EQ of ISO/IEC TR 2472D12(E

Information Technology Programming Languagas Guidance to Avoiding
Vulnerabilities in Programming Languages through Language Selection and
Use

1. Scope

This Technical Report specifies softwaregramming languageulnerabilitiesto be avoidel in the development
of systemswvhere assured behaviour is required for security, safetigsioncritical andbusinesscritical software.
In general, this guidance is applicable to the software developed, reviewed, or maintained s@ication.

Vulnerabilities are described in a generic manner that is applicable to a broad range of programming languages.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ISTIEC 800062:2009 Quantities and units Part2: Mathematical signs and symbdtsbeuse in thenatural
sciences and technology
ISO/IE@382¢1:1993,Information technology Vocabularyt Part 1: Fundamental terms

3. Terms and definitions , symbols and conventions

3.1 Terms and definitions

For the purposes of this documerthie terms and definitiongjiven inlISO/IEC 2382 and the followingapply.
Other terms are defined where they appeaiitalic type.

3.1.1 Communication

3.111

protocol

set of rules and supporting structures for the interaction of threads

Note 1: A protocol can be tightly embedded anely upon data in memory and hardware to control
interaction of threads or can be applied to more loosely coupled arrangements, such as message
communication spanning networks and computer systems.

© ISTIEC2010¢ All rights reserved 17

WG 23/N 027 Baseline Edition 2TR 24772

3.11.2

stateless protocol

communication or cooperation lieeen threads where no state is preserved in the protocol itself (example HTTP
or dired access to a shared resource)

Note 1: Since most interaction between threads requdtbat state be preserved, the cooperating threads
must use values of the resources(hemselves or add additional communication exchanges to maintain
state. Stateless protocols require that the application provide explicit resource protection and locking
mechanisms to guarantee the correct creation, view, access to, modificationcdflestruction of the
resourceg for examplethe state needed forarrect handling of the resource

3.1.2 Execution model
3.121

thread

sequential stream of execution

Note 1: Although the term thread is used here and the context portraigethat ofsharedmemory threads
executing as part of a process, everything documented applies equally to other variants of concsaancy

as interrupt handlers being enabled by a process, processes being created on the semeusing

operating system routines, or processes created as a result of distributed messages sent over a network. The
mitigation approaches will be similar to those listed in the relevant vulnerability descriptions, but the
implications for standardizaiin would be dependent on how much language support is provided for the
programming of the concurrent system.

3.12.2
thread activation
creation and setup of a thread up to the point where the thread begins execution

Note 1: Athreadmay depend uporne or more other threads to define iteccess to otheobjects to be
accessed and to deterime its duration

3.12.3
activated thread
threadthat is created andhen begins execution as a resultthiread activation

3.124

activating thread

thread thatexists first and makes the library calls or contains the language syntax that causes the activated thread
to be activated

Note 1: Theactivatingthreadmay or may not wait for thactivatedthreadto finish activation ananay or
may not check for errors if the activation fails. Tdutivatingthreadmay or may not be permitted to
terminate until after theactivatedthreadterminates.

18 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

3.125

static thread activation

creation and initiatio of a thread by program initiation, an operating system or runtime kernel, or by another
thread as part of a declarative part of the thread before it begins execution

Note 1: In static activation, a static analysis can determine exactly how many thredewreated and how
much resource, in terms of memory, processors, cpu cycles, priority ranges anthiet®dl communication
structures, will be needed by the executing program before the program begins.

3.12.6

dynamic thread activation

creation andnitiation of a thread by another thread (including the main program) as an executable, repeatable
command, statement or subprogram call

3.12.7
thread abort
request to stop and shut down a thread immediately

Note 1: The request is asynchronous if from @mer thread, or synchronous if from the thread itself. The
effect of the abort requestsuch asvhether it is treated as an exception) and its immedidbgt(is, how long
the thread may continue to execute before it is shut down) depend on langsjpgeifc rules. Immediate
shutdown minimizes latency but may leave shared data structures in a corrupted state.

3.12.8
termination-directing thread
thread (including the OS) that requests the alimmtof one or more threads

3.12.9

thread termination

completion and orderly shutdown of a thread, where the thread is permitted to make data objects consistent,
release any acquired resourcesd notify any dependent threads that it is terminating

Note 1: There are a number of steps in the terminationacthread as listed below, but depending upon the
multithreading model, some of these steps may be combined, may be explicitly programmed, or may be
missing

1 thetermination of programmed execution of the thread, including termination of any synchmnou
communication;
the finalization of the local objects of the thread;
waiting for any threads that may depend on the thread to terminate;
finalization of any state associated with dependent threads;
notification thatfinalization is complete, including psible notification of the activating task;
removal and cleanup of thread control blocks and any state accessible by the tbrégobther
threads in outer scopes.

=A =4 =4 =4 =4

© ISTIEC2012¢ All rights reserved 19

WG 23/N 027 Baseline Edition 2TR 24772

3.12.10
terminated thread
thread thathas beerhalted from any further execution

31211

master thread

thread which must wait foaterminated thread before it can take further execution stepgliiding termination
of itself)

3.1.2.12
process
single execution of a prograror portion of an application

Note 1: Processeso not normallyshare a common memory space, lmiten share

1 processor,

network,

operating system,

filing system,
environment variables, or
other resources.

= =4 =4 =4 =4

Processes are usually started and stopped by an operating system and may or may not interact with other
proceses. A process may contain multiple threads.

3.1.3 Properties

3.1.3.1

software quality

degree to which software implements the requirements described by its specificatidnthe degree to which
the characteristics of a softwangroduct fulfill itsrequirements

3.13.2
predictableexecution
property of the program such that all possible executions have results that can be predicted from the source code

3.1.4 Safety

3.14.1

safety hazard

potential source of harm

Note 1 IEC 615081 Y RSFTAYySa I alFTFNRéE Fa F GLRGSYGALFE &2
damage to the health of people either directly or indirectly as a result of damage to property or to the
environy Sy i ¢ @ {2YS RSNRAROGSR &l yRI-bBERmoAderdatibg@dinitioriiof | Y 5S7F
GKFENXYE G2 AyOtdzRS YFGSNAIE YR SYy@aANRYyYSylGlft RIFYL
environmental damage).

20 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

3.1.4.2
safety-critical software
software for applications where failure can cause very serious consequences such as human injury or death

Note 1: IEC 615081 Y RS T ANGStAl SR FHRARI S NBe a aaz2Fdslt NB (F
functions in a safig-related system.Notwithstanding that in some domains a distinction is made between
safetyrelated (can lead to any harm) and safetytical (life threatening), this Technical Report uses the term
safety-criticalfor all vulnerabilities that can resul safety hazards.

3.1.5 Vulnerabilities

3.151

application vulnerability

security vulnerability or safety hazard, or defect

3.15.2

languagevulnerability

property(of a programming langge) that carcontributeto, or that is strongly correlated with, application
vulnerabilities in programs written in that language

Note 1: The term "property” can meatihe presence othe absence of a specific featynesed singly or in
combination As anexample of the absence of a featymncapsulation (control of where nameanbe
referenced from) is generally considerbdneficialsince it narrows the interface between modules and can
help prevent data corruptionThe absence of encapsulation fronp@gramming language can thus be
regarded as a vulnerabilityNote that a property together with its complemenanboth be considered
language vulnerabilitiesiFor example, automatic storage reclamation (garbage collectmmbea
vulnerability sincét can interfere with time predictability and result in a safety hazard. On the other hand,
the absence of automatic storage reclamatamalsobe a vulnerability since programmers can mistakenly
free storage prematurely, resulting in dangling references

3.1.5.3

security vulnerability

weakness in an information system, system security procedures, internal controls, or implementation that could
be exploited or triggered by a threat

3.2 Symbols and conventions
3.2.1 Symbols

For the purposes of this document, tsgmbolsgiven in ISO/IEC 800§®apply. Other symbols are defined
where they appear in this document.

3.2.2 Conventions

Programming language tokeand syntactic tokesappear incourier font.

© ISTIEC2012¢ All rights reserved 21

WG 23/N 027 Baseline Edition 2TR 24772

4. Basic concepts

4.1 Purpose of this Technical Report

This Technical Report specifies software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission critical and $usitieed software.
In general, this guidance is applicable to the software developed, reviewed, or maintained for any application.

This Technical Report does not address software engineering and management issues such as how to design and
implement progams, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of propertiesd applicationso be assuredre not treated.

While thisTechnical Repodoes not discuss specificationaesign issues, there is recognition that boundaries
among the various activities are not cleaurt. ThisTechnical Reposeeks to avoid the debate about where low
level design ends and implementation begins by treating selected issues that some mmigjdiecalesign issues
rather than coding issues.

The body of thiFechnical Report provides users of programming languages with a lanonasgpendent
overview of potential vulnerabilities their usage Annexes describe how the general observations afiply
specific languages.

4.2 Intended audience

The intended audience for this Technical Repwetthose who are concerned with assuritige predictable

execution of thesoftware of their system; that is, those who are developing, qualifying, antaiaing a software
system and need to avoid language constructs that could cause the software to execute in a manner other than
intended.

Developers of applications that have clear safety, securityigsioncriticality are expected to be award the

risks associated with their code and could use T@shnical Repotb ensure that theidevelopment practices
address the issues presented by the chosen programming languages, for example by subsetting or providing
coding guidelines

It should na be assumed, howevethat other developers can ignore thi®chnical ReportA weakness ia non
critical applicatiormay provide the route by which an attacker gains control of a system or otherwise distpt
hosted applications that are criticalt is hoped thatall developers would use thiBechnical Repottb ensure that
common vulnerabilities are removed or at least minimized from all applications.

Secific audiences for this International Technical Repantude developersmaintainers and rgulatorsof:

Safetycritical applications that might cause loss of life, human injury, or damage to the environment
Securitycritical applications that must ensure properties of confidentiality, integrity, and availability
Missioncritical applicationshiat must avoid loss or damage to property or finance

Businesgritical applications where correct operation is essential to the successful operation of the
business

9 Scientific, modeling and simulation applications which require high confidence in thiésregpossibly
complex, expensive and extended calculation

=A =4 =4 =2

22 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

4.3 How to use this document

This Technical Report gathers descriptions of programming language vulnerabilities, as well as selected
application vulnerabilities, which haweawrred in the past and are likely to occur agaiach vulnerability and its
possible mitigations are described in the body of the report in a langiragpendent mannerthough

illustrative examples may be language specifit addition, annexes for parular languages describe the
vulnerabilities and their mitigations in a manner specific to the language.

Because new vulnerabilities are always being discovered, it is anticipated th@ethnical Repowill be revised

and new descriptions added=a that reason, a scheme that is distinct from stlause numbering has been

adopted to identify the vulnerability description&ach description has been assigned an arbitrarily generated,
unique threeletter code. These codes should be used in prefereaacib-clause numbers when referencing
descriptionsbecause they will not change as additional descriptions are added to future editions of this Technical
Report.

The main part of tls Technical Repoxtontains descriptions that are intended to be langedigdependent to the
greatest possible extenAnnexesapply the generic guidance to particular programming languages.

This Technical Repottas been written with several possible usages in mind:

1 Programmers familiar with the vulnerabilities of a sped#itguage can reference the guide for more
generic descriptions and their manifestations in less familiar languages.

f Tool vendors canuse thethréeS 1 G SNJ O2RS& a4 | adzOOAy Ol ¢l & G2
considered by their tools.

1 Individual organizations may wish to write their own coding standards intended to reduce the number of
vulnerabilities in their software products. The guide can assist in the selection of vulnerabilities to be
addressed in those standards and the selectionoalitg guidelines to be enforced.

9 Organizations or individuals selecting a language for use in a project may want to consider the
vulnerabilities inherent in various candidate languages.

1 Scientistsengineers, economists, statisticians, or others who wedeputer programs as tools of their
chosen craft can read this document to become more familiar with the issues that may affect their work.

Thedescriptionsnclude suggestions for ways of avoiding the vulnerabilitiésme are simply the avoidance of
particular coding constructs, but others may involve increased review or other verification and validation
methods. Source code checking tools can be used to automatically enforce some coding rules and standards.

Clause 2 provides Normative references, atali§e 3 provides Terms, definitions, symbols and conventions.
Clause 4 provides the basic concepts used for this Technical Report.

Clause 5Yulnerability Issuegrovides rationale for this Technical Report and explains how many of the
vulnerabilities @cur.

Clause 6Programming Language Vulnerabilitiggovides languagandependent descriptions of vulnerabilities in
programming languages that can lead to application vulnerabilities. Each description provides:

1 a summary of the vulnerability,

© ISTIEC2012¢ All rights reserved 23

WG 23/N 027 Baseline Edition 2TR 24772

characteistics of languages where the vulnerability may be found,

typical mechanisms of failure,

techniques that programmers can use to avoid the vulnerability, and

ways that language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

= =4 =4 =4

Clause 7Application Vulnerabilitiegprovides descriptions of selected application vulnerabilities which have been
found and exploited in a number of applications and which have well known mitigation techniques, and which
result from design decisions made by coders in the absence of suitable language library routines or other
mechanisms For these vulnerabilities, each description provides:

1 asummary of the vulnerability,
1 typical mechanisms of failure, and
1 techniques that ppgrammers can use to avoid the vulnerability.

Clause 8New Vulnerabilitiesprovides new vulnerabilities that have not yet had corresponding programming
language annex text developed.

AnnexA, VulnerabilityTaxonomyand List is a categorization of thaulnerabilities of this report in the form of a
hierarchical outline and a list of the vulnerabilities arranged in alphabetic order by their three letter code.

AnnexB, Language Specific Vulnerability Templasea template for the writing of programmingniguage specific
annexes that explain how the vulnerabilities from clause 6 are realized in that programming language (or show
how they are absent), and how they might be mitigated in langesageific terms.

Additional annexes, each named for a particydemgramming language, list the vulnerabilities of Clauses 6 and 7
and describe how eachulnerability appearn the specific language and how it may be mitigated in that
language, whenever possible. All of the langudgpendent descriptions assume thiéie user adheres to the
standard for the language as listed in the siiduse of each annex.

5 Vulnerability issues

5.1 Predictable execution

There are many reasons why software might not execute as expected by its developers, its users or other
stakehdders. Reasons include incorrect specifications, configuration management errors and a myriad of others.
This Technical Report focuses on one caube usage of programming languages in ways that render the
execution of the code less predictable.

Predictalte executionis a property of a program such that all possible executions have results that can be
predicted from examination of the source codachieving predictability is complicated by that fact that software
may be used:

1 on unanticipated platformsf@r example ported to a different processor)
9 in unanticipated ways (as usage patterns change),
1 in unanticipated contextd@r example software reuse and systeinf-system integrations), and

24 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 by unanticipated userddr exampe, those seeking to exploit and penetrate a software system).

CdZNIKSNXY2NBZ (2RI Qa dzoAljdzAid2dza O2yySOGAGAGE 2F a2z
attacked either because it is a target for penetration or because it offersrengpoard for penetration of other
software.! OO2NRAy3If &z G2RIFI@Q&a LINPINFYYSNR Ydzaad GF1S I RF
the new challenges.

Software vulnerabilitieare unwanted characteristics ebftwarethat may allow software to execute in watfsat

are unexpected.Programmers introduce vulnerabilities into software by using language features that are
inherently unpredictable in the variable circumstances outlined above or by using featwesanner that

reduces what predictability they could offe©f course, complete predictability is an ideal (particularly because
new vulnerabilities are often discovered through experience), but any programmer can improve predictability by
carefuly avoidng the introduction of known vulnerabilities into code.

This Technical Report focuses on a particular class of vulnerabidiigsiage vulnerabilitiesThese are

properties of programming languages that can contribut€dr are strongly correlated witlgpplication

vulnerabilities security weaknesses, safety hazards, or defeats example may clarify the relationshiphe

LINE AN YYSNRa dzaS 27F | & dondhetilen@enai be ¥xploitedday ab atfackef to i K |
place incorrect return values on the program stack, hence passing control of the execution to code provided by
the attacker. The string copying function is the language vulnerability and the resulting weskri¢he program

in the face of the stack attack is the application vulnerabilithe programming language vulnerability enables

the application vulnerabilityThe language vulnerability can be avoided by using a string copying function that
does set apropriate bounds on the length of the string to be copidl; using a bounded copy function the
LINEINI YYSNI AYLINRP@PSE GKS LINBRAOGFIoAftAGE 2F (GKS O2RS

The primary purpose of this Technical Report is to survey common programming language Vitinerabis is

done in Clause 6Each description explains how an application vulnerability can rebuflause 7, a few

additional application vulnerabilities are describethese are selected because they are associated with language
weaknesses @n if they do not directly result from language vulnerabiliti€®r example, a programmer might

have stored a password in plaiext (see7.20 Insufficiently Protected Credentid§YM) because the

programming language did not provide a suitable library function for storing the password irrecmverable

format.

In addition to considering the individual vulnerabilities, it is instructive to considerdtieeas of uncertainty that
can decrease the predictability of softwar&hese sources are briefly considered in the remainder of this clause.

5.2 Sources of unpredictability in language specification

5.2.1 Incomplete or evolving specification

The desigrand specification of a programming language involves considerations that are very different from the
use of the language in programminganguage specifiers often need to maintain compatibility with older

versions of the languageeven to the extent of raining inherently vulnerable featuressometimes the
aSYlLyiada 2F yS6 2N O2YLX SE FSIGdzNB& | NBy Qi O2YLX S
features.

© ISTIEC2012¢ All rights reserved 25

WG 23/N 027 Baseline Edition 2TR 24772

5.2.2 Undefined behaviour

LiQa aAyvYLX e y2i LI aainmninglaff@dstoidéstibaiekds @dsdible Batavidpif. Fdr LINE
example, the result of using a variable to which no value has been assigned is left undefinaayttgnguages.

In such cases, a program might do anythimgcluding crashing with no diagnostic executing with wrong data,

leading to incorrect results.

5.2.3 Unspecified behaviour

The behaviour of some features may be incompletely defined. The language implementer would have to choose
from afinite set of choices, but the choice may not be afgrd to the programmer. In such cases, different
compilers may lead to different results.

5.2.4 Implementation -defined behaviour

In some cases, the results of execution may depend upon characteristics of the compiler that was used, the
processor upon whitthe software is executed, or the other systems with which the software has interfates.
principle, one could predict the execution with sufficient knowledge of the implementation, but such knowledge
is sometimes difficult to obtainFurthermore, depadence on a specific implementatiatefined behaviour will

lead to problems when a different processor or compiler is ussgimetimes if different compiler switch settings
are used.

5.2.5 Difficult features

Some language features may be difficult to undemnsl or to use appropriately, either due to complicated

semanticsfor example floating point in numerical analysis applications) or human limitatifomrsgxample,

deeply nested program constructs or expressior)metimes simple typing errors can lg¢adnajor changes in
behaviour without a diagnostiéqr examplefi @ LAYy 3 al¢ F2NJ [aadA3yYSyld 6KSy 2\
comparison).

5.2.6 Inadequate language support

No language is suitable for every possible applicatieurthermore, programmersometimes do not ave the

freedom to select the language that is most suitable for the task at hand. In many cases, libraries must be used to
supplement the functionality of the language. Then, the library itself becomes a potential source of uncertainty
reducing the predictability of execution.

5.3 Sources of unpredictability in language usage

5.3.1 Porting and interoperation

When a program is recompiled using a different compiler, recompiled using different switches, executed with
different libraries,executed on a different platform, or even interfaced with different systems, its behaviour will
change. Changes result from different choices for unspecified and implementifored behaviour,

differences in library function, and differences in underyhardware and operating system supporte

26 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

problem is far worse if the original programmer chose to use implementatependent extensions to the
language rather than staying with the standardized language.

5.3.2 Compiler selection and usage

Nearlyall software has bugs and compilers are no exceptiimey should be carefully selected from trusted
sources and qualified prior to us®erhaps less obvious, though, is the use of compiler switdbé&erent switch
settingscanresult in differerces in generated codeA careful selection of settings can improve the predictability
of code, for example, a setting that causes the flagging of any usage of an implemexqifiived behavioutr

6. Programming Language Vulnerabilities

6.1 General

This clause provides languaielependent descriptions of vulnerabilities in programming languages that can lead
to application vulnerabilitiesEach description provides:

1 a summary of the vulnerability,

characteristics of languages where the vulnelighmay be found,

typical mechanisms of failure,

technigues that programmers can use to avoid the vulnerability, and

waysthat language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

=A =4 =4 =4

Descriptiors of how vulnerabilities are manifested in particular programming languages are provided in annexes
of this Technical Report. In each case, the behaviour of the language is assumed to be as specified by the stand:
cited in the annex. Clearly, programautsbhave different vulnerabilities in a nestandard implementation.

Examples of nostandard implementations include:

9 compilers written to implement some specification other than the stangard
91 use of nonstandard vendor extensions to the languaged
9 useof compiler switches providing alternative semantics.

6.2 Terminology

The following descriptions are written in a langudagdependent manner except when specific languages are
used in examplesThe annexes may be consulted for language specific désasp

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hence terminology may differ from description to description.

© ISTIEC2012¢ All rights reserved 27

WG 23/N 027 Baseline Edition 2TR 24772

6.3 Type System [IHN]

6.3.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.3.2 Cross reference

JSF AV Rugel48 and 183

MISRA C 2004: 6.1, 6.2, 6.3, 10.1, and 10.5

MISRA C++ 2008:932, 50-3 to 50-14

CERT C guitiges: DCLOT, DCLEC, DCL3E, EXPOE and EXP32
AdaQualityand Style Guide: 3.4

6.3.3 Mechanism of failure

Thetype of a data object informs the compiléow values should be represented and which operations may be
applied. Thaype systenof a language is the set of rules used by the language to structure and organize its
collection oftypes Any attempt to manipulate data objects Wwithappropriate operations istgpe error A
program is said to bgype safe(or type securgif it can be demonstrated that it has no type errc23]|

Every programming language has some sort of type sysfefarguage istatically typedf the type of every
expression is known at compile tim&he type system is said to B&ongif it guarantees type safety andeakif
it does not. There are strongly typed languages that are not statically typed because tf@ge type safety
with runtime checks27].

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of the
inclusion of mechanisms to bypass type safety in particular circumstaRoeghat reason antlecause every

language has a different type system, this description will focus on taking advantage of whatever features for type
safety may be available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one typadthercompatibleone. For
example, consider the following program fragment, written in no specific language:

float a;
integer i;
a==a+i

The variablei"" is of integer type. It must be converted to the float type before it can be added to the date.va
An implicit conversion, as shown, is called coercibnon the other hand, the conversion must be explitit,
example "a := a + float(i) ", then the conversion is calledcast

Typeequivalencas the strictest form of type compatibility; tweypes are equivalent if they are compatible
without using coercion or casting.ype equivalence is usually characterized in termsaaie type equivalence
two variables have the same type if they are declared in the samard¢icn or declarations that use the same
type nama or structure type equivalencetwo variables have the same type if they have identical structures.

28 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

There are variations of these approaches and most languages useudiféembinations of them28]. Therefore,
a programmer skilled in one language may very well code inadvertent type errors when using a different
language.

It is desirable for a program to be type safe because the application of operations to operamdsappropriate
type may produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problem&earching for type errors is a valuable exercise because their presence often
reveals desigerrors as well as coding errorbany languages check for type errorsome at compildime,

others at runtime. Obviously, compiltime checking is more valuable because it can catch errors that are not
executed by a particular set of test cases.

Makingthe most use of the type system of a language is useful in two wayst, data conversions always bear

the risk of changing the value. For example, a conversion from integer to float risks the loss of significant digits
while the inverse conversion ks the loss of any fractional valu€onversion of an integer value from a type with
a longer representation to a type with a shorter representation risks the loss of significant digisscan

produce particularly puzzling results if the value is useithdex an array Conversion of a floatingoint value

from a type with a longer representation to a type with a shorter representation risks the loss of prediisn.

can be particularly severe in computations where thenber of calculations increasas a power of the problem
size. (It should be noted that similar surprises can occur when an application is retargeted to a machine with
different representations of numeric values.)

Second, grogrammercan use the type system to increase the prokigbof catching design errors or coding
blunders. For example, the following Atagment declares two distinct floatirgoint types:

type Celsius is new Float;
type Fahrenheit is new Float;

The declaration makes it impossible to add a vaitigype Celsius to a value of type Fahrenheit without explicit
conversion.

6.3.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:
i Languages that support multiple types aatbw conversions between types.

6.3.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

i Takeadvantage of any facility offered by the programming laamggito declare distinct types and use any
mechanism provided by the language processor and related tools to check for or enforce type
compatibility.

1 Use available language atubls facilities to preclude or detect the occurrence of coercidinit is not
possible, use human revietw assist in searching for coercions.

1 Avoid casting data values except when there is no alternaacument such occurrences so that the
justification is made available to maintainers.

© ISTIEC2012¢ All rights reserved 29

WG 23/N 027 Baseline Edition 2TR 24772

1 Use the most restricted data type thatffices to accomplish the jobd-or example, use an enumeration
type to select from a limited set of choicesi¢h asa switch statement or the discriminant of a union
type) rather than a more general type, such as intedgdris will make it possible féooling to check if all
possible choices have been covered.

1 Treat every compiler, tool, or rutime diagnostic concerning type compatibility as a serious issue. Do not
resolve the problem bynodifying the code by inserting an explicit cast, without furthealysisinstead
examine the underlying design to determine if the type error is a symptom of a deeper problem.

1 Never ignore instances of coercion; if the conversion is necesdaggeit to a cast and document the
rationale for use by maintaers.

1 Analyze the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, partial results and final results.

6.3.6 Implications for standardization

In future standardizatiomctivities the folowing items should be considered:

1 Language specifiers should standardize @ommon,uniform terminologyto describe their type systems
so that programmers experienced in other languages can reliably learn the type system of a language that
is new to then.

1 Provide a mechanism for selecting data types with sufficient capability for the problem at hand.

Provide a way for the computation to determine the limits of the data types actually selected.

1 Language implementers should consider providing compilecckest or other tools to provide the highest
possible degree of checking for type errors.

=

6.4 Bit Representations [STR]

6.4.1 Description of application vulnera bility

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a single
computer word, or access to bit fields that may cross computer words for the machine in question. Mistakes can
be made astowhatbitsaie2 06S | O0OSaaSR 0S Gl ®FS (KIS WLBNR CSSyaRRANI yoyaSS:
of miscalculations Access to those specific bits may affect surrounding bits in ways that compromise their

integrity. This can result in the wrong infmation being read from hardware, incorrect data or commands being
given, or information being mangled, which can result in arbitrary effects on components attached to the.system

6.4.2 Cross reference

JSF AV Ruléd7, 154 and 155

MISRA C 2004: 3.5, 6645, and 12.7

MISRA C++ 2008:0821, 52-4 to 52-9, and 95-1

CERT C guililees: EXP3&, INTOEC, INTOLC, INT1Z, INT1Z, and INTHE
AdaQualityand Style Guide: 7.6.1 throu@h6.9, and 7.3.1

30 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.4.3 Mechanism of failure

Computer languages frequdmptprovide a variety of sizes for integer variables. Languages may support short,
integer, long, and even big integers. Interfacing with protocols, device drivers, embedded systems, low level
graphics or other external constructs may require each bgetrof bits to have a particular meaning. Those bit
sets may or may not coincide with the sizes supported by a particular languatgamentation When they do

not, it is common practice to pack all of the bits into one word. Masking and shifting efdifteusing powers of
two to pick out individual bits or using sums of powers of 2 to pick out subsets ofdritsxample using
28=Z+2*+2* to create the mask 11100 and then shifting 2 bits) provides a way of extracting those bits.
Knowledge of the unetlying bit storage is usually not necessary to accomplish simple extractions such as these.
Problems can arise when programmers mix their techniques to reference the bits or output théhifslems

can arise when programmers mix arithmetic and logigarations to reference the bits or output the bit3he
storage ordering of the bits may not be what the programmer expects.

Packing of bits in an integer is not inherently problematic. However, an understanding of the intricacies of bit
level programnng must be knownSome computers or other devices store the hetfé-to-right while others

store themright-to-left. Thekind of storage can cause problems when interfacing with external devices that
expect the bits in the oppogtorder. One problem arises when assumptions are made when interfacing with
external constructs and the ordering of the bits or words are not the same as the receiving entity. Programmers
may inadvertently use the sign bit in a bit field and then mayb®aware that an arithmetic shift (sign

extension) is being performed when right shifting causing the sign bit to be extended into other fields.
Alternatively, a left shift can cause the sign bit to be oBé& . manipulations can also be problematic whbga
manipulations are done on binary encoded records that span multiple words. The storage and ordering of the
bits must be considered when doingise operations across multiple words as bytes may be storedin big
endianor little-endianformat.

6.4.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that allow bit manipulatians

6.4.5 Avoiding the vulnerab ility or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Any assumption about bit ordering should be explicitly documented.

i The way bit ordering is done on the host system and orstfsgems with which the bit manipulations will
be interfaced should be understood.

i Bit fields should be used in languages that support them.

9 Bit operators should not be used on signed operands.

9 Localize and document the code associated with explicit maatijpn of bits and bit fields.

6.4.6 Implications for standardization

In future standardization activities, the following items should be considered:

© ISTIEC2012¢ All rights reserved 31

WG 23/N 027 Baseline Edition 2TR 24772

9 For languages that are commonly used for bit manipulation&RI§Application Programming Interface)
for bit manipulations that is independent of word size and machine instruction set should be defined and
standardized.

6.5 Floating -point Arithmetic [PLF]

6.5.1 Description of application vulnerability

Most real numbersannot be represented exactly in a computdio represent real numbers, most computers
uselEC 6055¢47], or the US equivalerANSI/IEEE Std 7535]. Furthermore he bit representation for a

floating-point number can vary from compiler to compiler and on different platfarhrmvever relying on a

particular representation can causegimems when a different compiler is used or the code is reused on another
platform. Regardless of the representation, many real numbers can only be approximated since representing the
real number using a binary representatioray wellrequire an endlesslgepeating string of bits or more binary

digits than are available for representation. Therefore it should be assumed that a flpaiimgnumber is only

an approximation, even though it may be an extremely good one. Fleptimg representation of agal number

or a conversion to floatingoint can cause surprising results and unexpected consequences to those
unaccustomed to the idiosyncrasies of floatipgint arithmetic.

Many dgorithms that use floating point can have anomalous behaviour when ugtaccertain values. The most
common results are erroneous results or algorithms that never terminate for certain segments of the numeric
domain, or for isolated valuesThose without training or experience in numerical analysis may not be aware of
which dgorithms,or, for a particular algorithm, of which domain values should be the focus of attention.

6.5.2 Cross reference

JSF AV Rules: 146, 147, 184, 197, and 202

MISRA C 2004: 1.5, 12.13,3, and 13.4

MISRA C++ 2008483, 39-3, and 62-2

CERT C gidlines: FLPOC, FPOL, FLPOZ and FLP3C
AdaQualityand Style Guides.5.6 and 7.2.1 througi.2.8

6.5.3 Mechanism of failure

Floatingpoint numbers are generally only an approximation of the actual valixressedi base 10 world, the
valueofk 0 A a 5 The sametype of situation occurs in the binary world, thetnumbers that can be
represented with a limited number of digiis base 10such as 1/10=0.1 become endlessly repeating sequences
in the binary world. So 1/10 represented akiaary number is:

neanaAaMMANMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMAAMMIAIN

2KAOK A& NFMKH b nfFMkKn b NFMKYy b MFMKMC b MFMKOH b
representation will still only be an approximation of 1/10. Therefore when ad#lihiO ten times, the final result
may or may not be exactly 1.

Accumulating floating point values through the repeated addition of values, particularly relatively small values,
can provide unexpected result&élsing an accumulated value to terminate apgaman result in an unexpected

32 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

number of iterations.Rounding and truncation can cause tests of floafiint numbers against other values to
yield unexpected resultsAnother cause of floating point errors is reliance upon comparisons of floating point
values or the comparison of a floating point value with zeFests of equalitpr inequality can vary due to
rounding or truncation errors, which may propagate far from the operation of origin. Even comparisons of
constants may fail when a diffent rounding mode was employed by thempiler and by the application
Differences in magnitudes of floatifmgpint numbers can result in no change of a very large flogtivigt number
when a relatively small number is added to or subtracted fram it

Manipulating bits in floatingpoint numbers is also very implementation dependent. Typically special
representations are specified for positive and negative zero and infinity. Relying on a particular bit representatior
is inherently problematic, especiallynen a new compiler is introduced or the code is reused on another

platform. The uncertainties arising from floatipgint can be divided into uncertaiy about the actual bit
representation of a given valusuch asbigendian or littleendian) and the ocertairty arising from the rounding

of arithmetic operationsfor example the accumulation of errors when imprecise floatipgint values are used

as loop indices).

6.5.4 Applicable language characteristics

This vulnerability description is intended lbe applicable to languages with the following characteristics:

1 All languages with floatirgoint variables can be subject to rounding or truncation errors.
6.5.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulability or mitigate its ill effects in the following ways:

1 Do not use a floatingoint expression in a Boolean test for equality. Instead,aoskngthat determines
the difference between the two values to determine whether the difference is acceptaidil snough
a2 00KFG Go2 OFrftdzSa Oty 6S O2yaARSNBR SljdzZ f o b 2
Sy2dzakKé RAFTFSNBYyOS OFry o6S I @SNEBR fFNHS ydzyoSNO®
9 Use library functions with known numerical characteristics whenever possible.
1 Unless the use ofdating-point is simplean expert in numerical analysis should check the stability and
accuracy of the algorithm employed.
1 Avoid the use of a floatirgoint variable as a loop counter. ilis necessary to use a floatiqapint value
as a loop control, se inequality to determine the loop contrahét is,<, <=, > or >=).
1 Understand the floatingpoint format used to represent the floatifgoint numbers. This will provide
some understanding of the underlying idiosyncrasies of flogbioigt arithmetic.
1 Manipulating the bit representation of a floatifgpint number should not be done except with biitt
language operators and functions that are designed to extract the mantissa and exponent.
1 Do not use floatingpoint for exact values such as monetary amtsunUse floatingpoint only when
necessary such as for fundamentally inexact values such as measurements.
1 Consider the use of decimal floatipgint facilities when available.

6.5.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

© ISTIEC2012¢ All rights reserved 33

WG 23/N 027 Baseline Edition 2TR 24772

1 Languages that do not already adhere to or only adhere to a sub$eCo80559 [4ghould consider
adhering completely to the standard. Examples of standardization that should be considered:
0 C should consider regring IEC 6055%or floating-point arithmetig rather than providing it as an
option, as is the case in ISO/IEC 92091[4].
o Javashould consider fully adhering t&C 6055%stead of a subset.
1 Languages should consider providing a meargetterate diagnostics for code that attempts to test
equality of two floating point values
9 Languages should consider standardizing their data type to ISO/IEG- 10984 andSO/IEC 10967
2:2001

6.6 Enumerator Issues [CCH

6.6.1 Description of application vulnerability

Enumerationsare a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral vales (called the representation) and an order between the members of the set. In some languages
there are no other operations available except order, equality, first, last, previous, and next; in others the full
underlying representation operators are availéd S & dzOK | a-¢ A ¥ y~Biskdpedationsé | Yy R a

Most languages that provide enumeration types also provide mechanisms to setefiault representations. If
these mechanisms do not enforce whdige operations and check for conflicts then somembers of the set
may not be properly specified or may have the wrong piags If the valuesetting mechanisms are positional
only, then there is a risk that improper counts or changes in relative order will result in an incorrect mapping.

For arrays indxed by enumerations with nedefault representations, there is a risk of structures with holes, and
if those indexes can be manipulated numerically, there is a risk ebflibund accesses of these arrays.

Most of these errors can be readily detecteddtgitic analysis tools with appropriate coding standards,
restrictions and annotationsSimilarly mismatches in enumeration value specification can be detected statically.
Without such rules, errors in the use of enumeration types are computationallytbatdtect statically as well as
being difficult to detect by human review.

6.6.2 Cross reference

JSF AV Rule: 145

MISRA C 2004:®@and 9.3

MISRA C++ 2008:533

CERT C guililees: INTOSC
Holzmanrrule 6

AdaQualityand Style Guide: 3.4.2

6.6.3 Mechanism of failure

As a program is developed and maintained the list of items in an enumeration often changes in three basic ways:
new elements are added to the list; order between the members of the set often changes; and representation
(the map of valuesfahe items) changeExpressions that depend on the full set or specific relationships between

34 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

elements of the set can create value errors that could result in wrong results or in unbounded behaviours if used
as array indices.

Improperly mapped representisns can result in some enumeration values being unreachable, or may create
GK2ft Sa¢ Ay (KS NB LiNBcartof beldéfined siprapdg&aedS G f dzS &

If arrays are indexed by enumerations containing1default representations, some implementatismay leave
space for values that are unreachable using the enumeration, with a possibilibnetessarily large memory
allocationsor a way to pass information undetected (hidden channel).

When enumerators are set and initialized explicitly and the lagg permits incomplete initializers, then changes
to the order of enumerators or the addition or deletion of enumerators can result in the wrong values being
assigned or default values being assigned improp&lybsequent indexingan result innvalidaccesses and
possibly unbounded behaviours.

6.6.4 Applicable language Characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permit incomplete mappings between enumerspecification and value assignment, or
that provide a positionabnly mapping require additional static analysis tools and annotations to help
identify the complete mapping of every literal to its value.

9 Languages that provide a trivial mapping to a tgpeh as integer require additional static analysis tools
to prevent mixed type errorsThey also cannot prevenmtvalidvalues from being placed into variables of
such enumerator types. For example:

enum Directions {back, forward, stop};
enum Directions a = forward, b = stop, c = a + b;

In this example¢ may have a value not defined by the enumeration, and any further use as that
enumeration will lead to erroneous results.

1 Some languages provide no enumeration capability, leaving it to the programmdefit® named
constants to represent the values and ranges.

6.6.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use static analysis tools that wikigct inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction this is the compiler.

6.6.6 Impl ications for standardization

In future standardizatiomctivities the following items should be considered:

1 Languages that currently permit arithmetic and logical operations on enumeration types could provide a
mechanism to ban such operations progravide.

© ISTIEC2012¢ All rights reserved 35

WG 23/N 027 Baseline Edition 2TR 24772

1 Languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions and initialization expressions could provide a mechanism to enforce such matching.

6.7 Numeric Conversion Errors [FLJ

6.7.1 Description of application vulnerability

Certain contexts in various languages may require exact matches with respect to3gpes [

aVar := anExpression
valuel +v alue2
foo(argl, arg?2, ar g3, e ar gN)

Typeconversion seeks to follow these exact match rules while allowing programmers some flexibility in using
values such as: structuraljguivalent types in a namequivalent language, types whose value rangey ime

distinct but intersect (for example, subranges), and distinct types with sensible/meaningful corresponding values
(for example, integers and floatsExplicit conversions are callggpe casts An implicit typeconversion betwer
compatible but not necessarily equivalent types is catljged coercion

Numeric conversions can lead to a loss of data, if the target representation is not capable of representing the
original value. For example, converting fromiateger type to a smaller integer type can result in truncation if
the original value cannot be represented in the smaller size and converting a floating point to an integer can
result in a loss of precision or an eaftrange value.

Typeconversiorerrors can lead to erroneous data being generated, algorithms that fail to terminate, array
boundserrors,or arbitrary program execution.

6.7.2 Cross reference

CWE:
192. Integer Coercion Error
MISRA C 20040.1-10.6, 11.311.5, and 12.9
MISRA C++ 2008:-23-3, 50-3, 50-4, 50-5, 50-6, 50-7, 50-8, 50-9, 50-10, 52-5, 52-9, and 53-2
CERT C guiliimes: FLP3€, INTOZ, INTO&C, INT34C, and INT3E&

6.7.3 Mechanism of failure

Numericconversion errorsesults in data integrity issuglut they may also result in a number of safety and
security vulnerabilities

When the conversion results in no change in representation but a change in value for the new type, this may
result in a value that is not expressible in the new type, or thatehdsamatically different order or meaning.

One such situation is the change of sign between the origin and destination (negapusitive or positive>
negative), which changes the relative order of members of the two types and could result in matoess
failures if the values are used in address calculations.

36 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Vulnerabilities typically occur when appropriate range checking is not performedjraanticipatedvalues are
encountered. These can result in safety issues, for examvplenthe Ariane Sauncherfailure occurred due to
an improperly handled conversion error resulting in the processor being shutf2gjn

Conversiorerrors can also result in security issuds attackermay input gparticular numeric valuéo exploit a

flaw in the program logicThe resulting erroneous value may then be used as an array,indegp iteratora
length, a sizestate datg or in some othesecuritycritical manner For example, a truncated integer value may
be used to allocate mmory, while the actual length is used to copy information to the newly allocated memory,
resulting in a buffer overflo30].

Numerictype-conversiorerrorsoften lead to undefined states of execution resulting in infinite loops or crashes.
In some ases, integetype-conversionerrors can lead to exploitable buffer overflow conditions, resulting in the
execution of arbitrary code. Integéype-conversionerrors result in an incorrect value being stored for the
variable in question.

6.7.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

Languages that perform impliditpe-conversion (coercion).

Weakly typed languages that do not strictly ertfe type rules.

Languages that support logical, arithmetic, or circular sbiftinteger values
Languages that do not generate exceptions on problematic conversions.

=A =4 =4 =4

6.7.5 Avoiding the vulnerability or mitigating its effects

Software developers carvaid the vulnerability or mitigate its ill effects in the following ways:

1 The first line of defense against integer vulnerabilities should be range checking, either explicitly or
through strong typing. All integer values originating from a source thadtisrusted should be validated
for correctness. However, it is difficult to guarantee that multiple input variables cannot be manipulated
to cause an error to occur in some operation somewhere in a pro¢8am

1 An alternative or ancillary approach isgootect each operationHowever, because of the large number
of integer operations that are susceptible to these problems and the number of checks required to
prevent or detect exceptional conditions, this approach can be prohibitively labor intensivexaedsive
to implement.

1 Alanguage that generates exceptions on erroneous data conversions might be cBaessgn objects
and program flow such that multiple or complex casts are unneces&arsure that any data type casting
that you must use is entity understood to reduce the plausibility of error in use.

1 The use of static analysis can often identify whether or not unacceptable numeric conversions will occur.

Verifiably inrange operations are often preferable to treating out of range values asran @ndition because
the handling of these errors has been repeatedly shown to cause dafrsairvice problems in actual

applications. Faced with a numeric conversion error, the underlying computer system may do one of two things:
(a) signal some sodf error condition, or (b) produce a numeric value that is within the range of representable

values on that system. The latter semantics may be preferable in some situations in that it allows the computatior

© ISTIEC2012¢ All rights reserved 37

WG 23/N 027 Baseline Edition 2TR 24772

to proceed, thus avoiding a deniaf-service atack. However, it raises the question of what numeric result to
return to the user.

A recent innovation fromiSO/IEC TR 24731 13] that has been addetb the C standard 9899:2011 [#]the
definition of thersize_t type for the Qorogramming languageExtremely large object sizes are frequently a
aA3dy GKFG |y 202 3ncaredy. Farietasplegnegativerurmb@rdzippedr 8Rvery large positive
numbers wherconverted to an unsigned type lilsize t . Also, some implementations do not suppoljects

as large as the maximum value that can be represented bydigeet . Forthesereasons, it is sometimes
beneficial to restrict the range of object sizes to detect programming erieos.implementatios targeting
machines with large address spaciess recommended thaRSIZE_MAXbe defined as the smaller of the size of
the largestobject supported o(SIZE_MAX >> 1) , even if this limit is smaller than the sizesoime legitimate,
but very large, objds. Implementations targeting machines with smaaddress spaces may wish to define
RSIZE_MAXasSIZE_MAX, which means that therés no object size that is considered a runticenstraint
violation.

6.7.6 Implications for standardization
In future standadizationactivities the following items should be considered:

9 Languages should consider providing means similar to the IS@8EX201L [4] definition ofrsize_t
type for Cto restrict object sizes so as to expose programming errors.

1 Languageshould consider making dilpe-conversionsxplicit or at least generating warnings for implicit
conversions where loss of data might occur.

6.8 String Termination [CIM

6.8.1 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification can lead to eithelo&ggion or unexpected
behaviour

6.8.2 Cross reference

CWE:
170. Improper Null Termination
CERT C guililees: STRO8, STR3C, STR3E, and STR36

6.8.3 Mechanism of failure

String termination errors occur when the termination character is solelgdelpon to stop processing on the
stringandthe termination character is not present. Continued processing on the string can cause an error or
potentially be exploited as a buffer overflow. This may occur as a result of a programmer making an assumptio
that a string that is passed as input or generated by a library contains a string termination character when it does
not.

38 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Programmers may forget to allocate space for the string termination character and expect to be able to store an
length charactertsing in an array that ia characters long. Doing so may work in some instances depending on
what is stored after the array in memory, but it may fail or be exploited at some point.

6.8.4 Applicable language characteristics
This vulnerability descriptiois intended to be applicable to languages with the following characteristics:

1 Languages that use a termination character to indicate the end of a string.
9 Languages that do not do bounds checking when accessing a string or array.

6.8.5 Avoiding the vulne rability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Do not rely solely on the string termination character.
1 Use library calls that do not rely on string termination charasrch astrncpy instead ofstrcpy in
the standard C library.

6.8.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Eliminating library calls that make assuiops about string termination characters.
1 Checking bounds when an array or string is accessed.
1 Specifying a string construct that does not need a string termination character.

6.9 Buffer Boundary Violation (Buffer Overflow) [HCB]

6.9.1 Description of application vulnerability

A buffer boundary violatioarises when, due to unchecked array indexing or unchecked array copying, storage
outside the buffer is accessedlisually boundary violations describe the situation where such storage is then
written. Depending on where the buffés located, logically unrelated portions of the stack or the heap could be
modified maliciously or unintentionallyJsually, buffer boundary violations are accesses to contiguous memaory
beyond either end of the buffer data, accessing before the beginmingeyond the end of the buffer data is
equally possible, dangerous and maliciously exploitable.

6.9.2 Cross reference

CWE:
MHAN® . dZFFSNI 0218 6AGK2dzi / KSO1Ay3a {AT S 2F Ly Lz
122. Heapbased Buffer Overflow
124. Boundary BeginningA 2 f I GA2Yy oO0W. dZFFSNJ ! yYRSNBHNRGSQU
129. Unchecked Array Indexing
131 Incorrect Calculation of Buffer Size
787. Out-of-bounds Write
805. Buffer Access with Incorrect Length Value

© ISTIEC2012¢ All rights reserved 39

WG 23/N 027 Baseline Edition 2TR 24772

JSF AV Rule: 15 and 25

MISRA C 2004: 21.1

MISRA C++ 2008:0615 to 50-18

CERT guidelines: ARRRD ARR3Z, ARR3&, ARR3&, MEM35C and STR3T

6.9.3 Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

There are several kinds of failures (in all cases an exceptiotenaised if the accessed location is outside of
some permitted range of the rutime environment):

|l

A read access will return a value that has no relationship to the intended value, such as, the value of
another variable or uninitialized storage.

An outof-bounds read access may be used to obtain information that is intended to be confidential.
A write access will not result in the intended value being updated and may result in the value of an
unrelated object (that happens to exist at the given storagation) being modifiedincluding the
possibility of changes in external devices resulting from the memory location being hardveaed.
When an array has been allocated storage on the stack aofabunds write access may modify
internal runtime house&eping information (for example, a function's return address) which might change
I LINP3INFYQa O2yiGNRBEf Ff260

An inadvertent or malicious overwrite of function pointers that may be in meneaysinghem to point

to an unexpected location dhe attacker's ode. Even in applications that do not explicitly use function
pointers, the runtime will usually store pointers to functions in memotfyor example, object methods in
objectoriented languages are generally implemented using function pointers in asttatzture or
structures that are kept in memoryl'he consequence of a buffer boundary violation can be targeted to
cause arbitrary code execution; this vulnerability may be used to subvert any security service.

6.9.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1

Languages that do not detect and prevent an array being accessed outside of its declared bounds (either
by means of an index or by poinfgr

Langiages that do not automatically allocate storage when accessing an array element for which storage
has not already been allocated.

Languages that provide bounds checking but permit the check to be suppressed.

Languages that allow a copy or move operatidgthaut an automatic length check ensuring that source

and target locations are of at least the same size. The destination target can be larger than the source
being copied.

1 Using the physical memory address to access the memory location.

40

© ISQIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.9.5 Avoiding the vulnerability or mitigating its effects
Software developersam avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use of implementatiosprovided functionality to automatically check array element accesses and prevent
out-of-bounds accesses.

1 Use of static analysis to verify that all arrayesses are within the permitted bounds. Such analysis may
require that source code contain certain kinds of information, such as, that the bounds of all declared
arrays be explicitly specified, or that prand postconditions be specified.

1 Sanity checkswuld be performed on all calculated expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables having an unsigned data type when indexing an
array, on the basis that an unsigned data type can néeenegative. This recommendation simply converts an
indexing underflow to an indexing overflow because the value of the variable will wrap to a large positive value
rather than a negative one. Also some languages support arrays whose lower bourates t@n zero, so an

index can be positive and be less than the lower boudme languages support zesized arrays, So any
reference to a location within such an array is invalid.

In the past the implementation of array bound checking has sometinmsried what has been considered to be

a high runtime overhead (often because unnecessary checks were performed). It is now practical for translators
to perform sophisticated analysis that significantly reduces the runtime overhead (because runtime ategecks

only made when it cannot be shown statically that no bound violations can occur).

6.9.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages should provide safe copying of arraymigisin operation.

1 Languages should consider only providing array copy routines in libraries that perform checks on the
parameters to ensure that no buffer overrun can occur.

1 Languages should perform automatic bounds checking on accesses to array alamérgs the compiler
can statically determine that the check is unnecessdityis capability may need to be optional for
performance reasons.

9 Languages that use pointer types should consider specifying a standardized feature for a pointer type tha
would enable array bounds checking.

6.10 Unchecked Array Indexing [XYZ]

6.10.1 Description of application vulnerability

Unchecked array indexing occurbena value is used as an index into an array without checking that it falls
within the acceptable index range

© ISTIEC2012¢ All rights reserved 41

WG 23/N 027 Baseline Edition 2TR 24772

6.10.2 Cross reference

CWE:
129. Unchecked Array Indexing
676.Use of Potentially Dangerous Function
JSF AV Rules: 164 and 15
MISRA C 2004: 21
MISRA C++ 2008:0815 to 50-18
CERT C guililees: ARR3C, ARR3EZ, ARR3&, and ARR38
AdaQualityand Style Guide: 5.5.1, 5.5.2, 7.6.7, and 7.6.8

6.10.3 Mechanism of failure

A single fault could allow both an overflow and underflow of the arrdgxn An index overflow exploit might use
buffer overflow techniques, but this can often be exploited without having to provide "large inpé&tsay index
overflows can also trigger owif-bounds read operations, or operations on the wrong objeittat is, "buffer
overflows" are not always the result. Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issue$dost prominent of these possible flaws is the buffer overflmandition, with
consequences ramgg from denial of service, and data corruption, to arbitrary code executidime most

common situation leading to unchecked array indexing is the use of loop index variables as buffer itfdbees.
end condition for the loopsi subject to a flaw, the index can grow or shrink unbounded, therefore causing a
buffer overflow or underflow.Another common situation leading to this condition is the use of a function's
return value, or the resulting value of a calculation directlaas$ndex in to a bufferlUnchecked array indexing
can result in the corruption of relevant memory and perhaps instructions, lead to the program halting, if the
values are outside of the valid memory ardathe memory corrupted is data, rather than insttions, the

system might continue to function with improper valud§the corrupted memory can be effectively controlled, it
may be possible to execute arbitrary code, as with a standard buffer overflow.

Language implementations might or might not &tatly detect out of bound access and generate a cortpiie
diagnostic. At runtime the implementation might or might not detect tha-of-boundaccess and provide a
notification. The natification might be treatable by the program or it might not Becesses might violate the
bounds of the entire array or violate the bounds of a particinaex It is possible that the former is checked and
detected by the implementation while the latter is nothe information needed to detect the violation might
might not be available depending on the context of ufieor example, passing an array to a subroutine via a
pointer might deprive the subroutine of information regarding the size of the array.)

Aside from bounds checking, some languages have waystaicfing againsbut-of-boundsaccesse. Some

languages automatically extend the bounds of an array to accommodate accesses that might otherwise have been
beyond the bounds. However, this may or may not match the programmer's intent and can mask Smores.
languages provide for whole array operations that may obviate the need to access individual elements thus
preventing unchecked array accesses.

6.10.4 Applicable language characteristics

This vulnerability description is intended to be applicable&atguages with the following characteristics:

42 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Languages that do not automatically bounds check array accesses.
1 Languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.10.5 Avoiding the vulnerability or mitigatin g its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Include sanity checks to ensure the validity of any values used as index variables.
1 The choice could be made to use a language that is noeptibte to these issues.
1 When available, use whole array operations whenever possible.

6.10.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languagsshould consider providing compiler sehies or other tools to check the size and bounds of
arrays and their extents that are statically determinable.

1 Languages should consider providing whole array operations that may obviate the need to access
individual elements.

1 Languages should consideethapability to generate exceptions or automatically extend the bounds of
an array to accommodate accesses that might otherwise have been beyond the bounds.

6.11 Unchecked Array Copying [XYW]

6.11.1 Description of application vulnerability

A buffer overflow occurs when some number of bytes (or other units of storage) is copied from one buffer to
another and the amount being copied is greater than iscalted for the destination buffer.

6.11.2 Cross reference

CWE:
121.Stackbased Buffer Overflow
JSF AV Rule: 15
MISRA C 2004: 21.1
MISRA C++ 2008:(615 to 50-18
CERT C guililees: ARR3E and STR2T
AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.11.3 Mechanism of failure

Many languages and some third party libraries provide functions that efficiently copy the contents of one area of
storage to another area of storage. Most of these libraries do not perform any checks to ensure that the copied
from/t o storage area is large enoughaocommodateghe amount of data being copied.

The arguments to these library functions include the addresses of the contents of the two storage areas and the
number of bytes (or some other measure) to cofassing the apppriate combination of incorrect start
addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to the

© ISTIEC2012¢ All rights reserved 43

WG 23/N 027 Baseline Edition 2TR 24772

source/destination area. When passed incorrect parameters the library function performs one or more
unchecked array index accesses, as describédlinUnchecked Array IndexifgY 4.

6.11.4 Applicable language characteristics

This vulnerabilityescription is intended to be applicable to languages with the following characteristics:

1 Languages that contastandardlibrary functions for performing bulk copying of storage areas.
1 The same range of languages having the characteristics listetiliunchecked Array IndexifgY Z.

6.11.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability atigate its ill effects in the following ways:

1 Only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
(perhaps by writing a wrapper for the Standard provided functioR&form checks on the argument
expressons prior to calling the Standard library function to ensure that no buffer overrun will occur.

1 Use static analysis to verify that the appropriate library functions are only called with arguments that do
not result in a buffer overrun. Such analysis meyuire that source code contain certain kinds of
information, for example that the bounds of all declared arrays be explicitly specified, or thatgoe
post-conditions be specified as annotations or language constructs.

6.11.6 Implications for standa rdization
In future standardizatiomctivities the following items should be considered:

9 Languages should consider only providing libraries that perform checks on the parameters to ensure that
no buffer overrun can occur.
1 Languages should consider prowglifull array assignment.

6.12 Pointer Casting and Pointer Type Changes [HF(C]

6.12.1 Description of application vuln erability

The code produced for access via a data or function pointer requires that the type of the pointer is appropriate
F2NJ GKS RFEGF 2NJ FdzyOlAaA2y o0SAy3a | OO0OSaaSRo hi KSNBAAS
RFEGI LRAYSEBNE2A8SREBFHBGIOK 2NJ ai2NB AYyRANBOGEf & (KNERdJA
RSFAYSR (2 0SS GAy@20lG4A2y AYRANBOGte& GKNRdAdAK GKIF G L
GFLILINRPLINRFGS¢ (eSS Yre @GFENEB FY2y3 fFy3dz 3Sao

Bven if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.
6.12.2 Cross reference

CWE
136. Type Errors
188. Reliance on Data/Memory Layout

44 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

JSF AV Rules: 182 and 183

MISRA C 2004: 11.1, 11.2, 11.B4, and 11.5
MISRA C++ 2008:52 to 52-9

CERT C guililees: INT14C and EXP3a
Hatton 13: Pointer casts

AdaQualityand Style Guide: 7.6.7 and 7.6.8

6.12.3 Mechanism of failure

LF¥ | LRAYGSNRa (eSS Aa y2(0 ladcis¥e® dddkdn beSorfimeNbr prikady cRr-
be broken by inappropriate read or write operation using the indirection provided by the pointer Vélith.a

suitable type definition, large portions of memory can be maliciously or accidentally modifiedairSuch
modification of data objects will generally lead to value faults of the applicatidodification of code elements

such as function pointers or internal data structures for the support of oljéentation can affect control flow.

This can rake the code susceptible to targeted attacks by causing invocation via a ptmrfianction that has

0SSy YI yALMdz I G SR UGrgaliclolskoddi G2 |y Fadl O SNRa

6.12.4 Applicable language characteristics

This vulnerability description is intended to bgpdicable to languages with the following characteristics:

1 Pointers (and/or references) can be converted to different pointer types.
1 Pointers to functions can be converted to pointers to data.

6.12.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
9 ¢NBFG (KS O 2c6mddios Wihings biZsarigus &ridds.
1 Adopt programming guidelines (preferably augmented by static analysis) that restricepoartversions.
For example, consider the rules itemized above from JJESA\CERT [11] Hatton[18], or MISRA C
[12].

1 Other means of assurance might include proofs of correctness, analysis with tools, verification
technigquespr other methods

6.12.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

i Languages should consider creating a mode that provides a runtime check of the validity of all accessed
objects before thebject is read, written or executed.

6.13 Pointer Arithmetic [RVG]

6.13.1 Description of application vulnerability

Using pointer arithmetic incorrectly camsut in addresing arbitrary locations, which in turn can cause a program
to behave in unexpected ways.

© ISTIEC2012¢ All rights reserved 45

WG 23/N 027 Baseline Edition 2TR 24772

6.13.2 Cross reference

JSF AV Rule: 215
MISRA C 20047.1,17.2,17.3,and 17.4

MISRA C++ 2008:0615 to 50-18
CERT C guiliiges: EXPOE

6.13.3 Mechanism of failure

Pointer arithmetic used incorrectly can produce:

1 Addressing arbitrary memory locatiagriscluding buffer underflow and overflow.
1 Arbitrary code execution.
1 Addressing memory outside the range of the program

6.13.4 Applicable language ch aracteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that allow pointer arithmetic.

6.13.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoide vulnerability or mitigate its ill effects in the following ways:

9 Avoid using pointer arithmetic for accessing anything except conmpiygies
1 Prefer indexing for accessing array elements rather than using pointer arithmetic
1 Limit pointer arithmetic ciulations to the addition and subtraction of integers.

6.13.6 Implications for standardization
[None]

6.14 Null Pointer Dereference [XYH]

6.14.1 Description of application vulnerability

A nultpointer dereference takes place when a pointer with a valudlbiLLis used as though it pointed to a valid
memory locationThis is a special case of accessing storage via an invalidmpoint

6.14.2 Cross reference

CWE:

476. NULL Pointer Dereference
JSF AV Rule 174
CERT C guililees: EXP3C
AdaQualityand Style Guide: 5.4.5

46 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.14.3 Mechanism of failure

When apointer with a value oNULLIis used as though it pointed to a valid memoryalan, then a nubpointer
dereference is said to take place. Ttamresult in a segmentation fault, unhandled exceptionaocessing
unanticipated memory locations.

6.14.4 Applicable language characteristics
This vulnerability description is intend¢o be applicable to languages with the following characteristics:

1 Languages that permit the use of pointers and that do not check the validity of the location being
accessed prior to the access.
1 Languages that allow the use oN&JLL pointer.

6.14.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
9 Before dereferencing a pointer, ensure it is not equaNtdLL

6.14.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1 Alanguagédeaturethat would check a pointer valutor NULLbefore performinganaccesshould be
considered.

6.15 Dangling Reference to Heap [XYK]

6.15.1 Description of application vulnerability

A dangling reference is a reference to an object whose lifetime has ended due to exgallitdtion or the stack
frame in which the object resided has been freed due to exiting the dynamic sdtywememory for the object

may be reused; therefore, any access through the dangling reference may affect an apparently arbitrary location
of memory, corrupting data or code.

This description concerns the former case, dangling references to the Adepdescription of dangling
references to stack frames[BCM. In many languages references are called pointers; the issues are identical.

A notablespecial case of using a dangling refereiscealling a deallocator, for exampfege(), twice on the
samepointervalue { dzZOK | a52dz0f S CNBSE¢ YIF & O2NNYzLIW Ay dSNYI €
leading to faulty pplication behaviour (such as infinite loops within the allocator, returning the same memory
repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to
another request since the firstee() call, to name bt a few), or it may have no adverse effects at all.

Memory corruption through the use of a dangling reference is among the most difficult of errors to locate.

© ISTIEC2012¢ All rights reserved 47

WG 23/N 027 Baseline Edition 2TR 24772

With sufficient knowledge about the heap management scheme (often provided b H@peratirg Systempr
run-time system), use of dangling references is an exploitable vulnerability, since the dangling reference provides
a method with which to read and modify valid data in the designated memory locations after freed memory has
been reallocated ly subsequent allocations.

6.15.2 Cross reference

CWE:
415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))
416. Use After Free

MISRA C 2004: 1761

MISRA C++ 2008:391, 7-5-1, 7-5-2, 7-5-3, and 184-1

CERT C guililees: MEMO01C, MEM36C, and MEM31.C

AdaQualityand Style Guide: 5.4.5, 7.3.3, and 7.6.6

6.15.3 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be reserved
for it. An object exists ancktains its laststored value throughout its lifetime. If an object is referred to outside of
its lifetime, the behaviour is undefinedxplicit deallocation of heagllocated storage ends the lifetime of the
object residing at this memory location (aseddeaving the dynamic scope of a declared varialllag value of a
pointer becomes indeterminate when the object it points to reaches the end of its lifetime. Such pointers are
called dangling references.

The use of dangling references to previouslheffenemory can have any number of adverse consequences
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation and
timing of the deallocation causing all remaining copies of the reference to becomdirdgraf the system's reuse
of the freed memory, and of the subsequent usage of a dangling reference.

Like memory leaks and errors due to doubleallecation, the use of dangling references has two common and
sometimes overlapping causes:

1 An error condiion or other exceptional circumstanc#sat unexpectedly cause an object to become
undefined
91 Developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible thatrd#fierenced memory has been reallocated.
Therefore, assignment using the original pointer has the effect of changing the value of an unrelated variable.
This induces unexpected behaviour in the affected progrirthe newly allocated data happens told a class
description, in an objeebriented language for example, various function pointers may be scattered within the
heap data.If one of these function pointers is overwritten with an address of malicious code, execution of
arbitrary code can be adeved.

6.15.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

48 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Languages that permit the use of pointers and that permit explicit deallocation by the develpp
provide for alternative means to reallocate memory still pointed to by some pointer value
Languages that permit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

6.15.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1

Use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed.

Use a coding style that does not permit deallocation.

In complicated error conditions, be sure that cleam routines respect the state of allocation properly.

the language is objedairiented, ensure that object destructors delete dachunk of memory only once.
Ensuring that all pointers are set MlJLLonce the memory they point to have been freed can be an
effective strategy.The utilization of multiple or complex data structures may lower the usefulness of this
strategy.

Use a sttic analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refers to is no longer a pointer to valid memory location.

Allocating and freeing memory in different modules and levels of abstraction burdemsdageammer

with tracking the lifetime of that block of memonryhis may cause confusion regarding when and if a
block of memory has been allocated or freed, leading to programming defects such as-fieable
vulnerabilities, accessing freed memory, oreferencingNULL pointers or pointers that are not

initialized. To avoid these situations, it is recommended that memory be allocated and freed at the same
level of abstraction, and ideally in the same code module.

6.15.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

1

Implementations of the free function could tolerate multiple frees on the same reference/pointer or frees
of memory that was never allocated.

Language specifiers should desggmerics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a contipile error.

For properties that cannot be checked at compile time, language specifiers should providedioss
mechanism for checking properties at rtime. It should be possible to inhibit assertion checking if
efficiency is a concern.

A storage allocation interface should be provided that will allow the called function to set the pointer
used to NULL &t the referenced storage is deallocated.

© ISTIEC2012¢ All rights reserved 49

WG 23/N 027 Baseline Edition 2TR 24772

6.16 Arithmetic Wrap -around Error [FIF]

6.16.1 Description of application vulnerability

Wrap-arounderrors can occur whenever a value is incremented past the maximum or decremented past the
minimum value representable in its type and, depending upon

1 whether the type is signed or unsigned
1 the specification of the language semantics and/or
1 implementatian choices,

"wraps around” to an unexpected valuEhis vulnerability is related ©.17 Using Shift Operatiorfer
Multiplication and DivisiofPIK?2.

6.16.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wraparound
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1 to 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3to 5-0-10, and 519-1
CERT C guidelines: INTBONT3ZC, and INT3€

6.16.3 Mechanism of failure

5dzS (G2 K2g¢ FNAGKYSGAO A& LISNF2NN¥VSR o0& O2YLJziSNBXZ AT
representable in its type, the system may failpgrovide an overflow indication to the programne of the most
O02YY2y LINPOSaa2NJ 0SKIF@A2dzNJ Aa (2 daoN¥LX (2 | @GSNE f
underflow, or saturate at the largest representable value.

Wrap-around oftengenerates an unexpected negative value; this unexpected value may cause a loop to continue
for a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation. A wrajaround can sometimes trigg buffer overflows that can be used to execute arbitrary

code.

It should be noted that the precise consequences of waequind differ depending on:

1 Whether the type is signed or unsigned

1 Whether the type is a modulus type

2 KSGKSNI (KS (latedByriceadihgyfg Baxinam répiegentable value or falling short of
the minimum representable value

1 The semantics of the language specification

1 Implementation decisions

2 This description is derived from Wrapgound Error [XYY], which pgared in Edition 1 of this international technical report.

50 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

However, in all cases, the resulting problem is that the value yielded by thputation may be unexpected.
6.16.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
9 Languages that do not trigger an exception condition when a varapnd eror occurs.
6.16.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:
1 Determine applicable upper and lower bounds for the range of all variables andngealye mechanisms
or static analysis to determine that values are confined to the proper range.
1 Analyze the software using static analysis looking for unexpected consequences of arithmetic operations.
6.16.6 Implications for standardization
In future standardization activities, the following items should be considered:
1 Language standards developers should consider providing facilities to specify either an error, a saturated
value, or a modulo result when numeric overflow occudeally, the selectiommong these alternatives

could be made by the programmer.

6.17 Using Shift Operations for Multiplication and Division [PIK]

6.17.1 Description of application vulnerability

Using shift operations as a surrogate for multiply or divide may produce an unexpected valuéhetsgm bit is
changed or when value bits are losthis vulnerability iselated t06.16 Arithmetic Wraparound ErrofFIf3.

6.17.2 Cross reference

CWE:

128. Wraparound Error

190. Integer Overflow or Wrapaund
JSF AV Rules: 164 and 15
MISRA C 2004: 10.1to 10.6, 12.8 and 12.11
MISRA C++ 2008:13-3, 50-3 to 50-10, and 519-1
CERT C guidelines: INTBONT3ZC, and INT3C

6.17.3 Mechanism of failure

Shift operations intended to produce results ecalant to multiplication or division fail to produce correct results
if the shift operation affects the sign bit or shifts significant bits from the value.

3This description is derived from Wrapound Error [XYY], which appeared in Edition 1 of this international technical report.

© ISTIEC2012¢ All rights reserved 51

WG 23/N 027 Baseline Edition 2TR 24772

Such erroreften generate an unexpected negative value; this unexpected value may cause a loopinoe for
a long time (because the termination condition requires a value greater than some positive value) or an array
bounds violation.The errorcan sometimes trigger buffer overflows that can be used to execute arbitrary code.

6.17.4 Applicable lang uage characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Languages that permit logical shift operations on variables of arithmetic type.

6.17.5 Avoiding the vulnerability or mitigati ng its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine thaales are confined to the proper range.

1 Analyze the software using static analysis looking for unexpected consequences of shift operations.

1 Avoid using shift operations as a surrogate for multiplication and dividwost compilers will use the
correctoperation in the appropriate fashion when it is applicable.

6.17.6 Implications for standardization
In future standardization activities, the following items should be considered:
9 Not providing logical shifting on arithmetic values or flagging it foleneers.

6.18 Sign Extension Error [XZI]

6.18.1 Description of application vulnerability
Extending a signed variable that holds a negative valuepr@jucean incorrect result.
6.18.2 Cross reference

CWE:

194. Incorrect Sign Extension
MISRA C++ 2008:054
CERT C guililges: INT13C

6.18.3 Mechanism of failure

Converting a signed data type to a larger data type or pointer can cause unexpected behavitutrgdue

extension of the sign bit. Aegativedata element that is extendedith an unsigned extension algorithm will
produce an incorrect resultFor instance, this can occur when a signed character is converted to a type short or a
signed integer (3dit) is converted to an integer type long (64). Sig extension errors calead tobuffer

overflows and other memory based problemBhis can occur unexpectedly when moving software designed and
tested on a 32vit architecture to a 64bit architecturecomputer.

52 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.18.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that are weakly typed due to their lack of enforcement of type classificatiomderadtions.
1 Languages that explicitly or implicitly allow applying unsigned extension operations to signed entities or
viceversa.

6.18.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigételi effects in the following ways:

1 Use a sign extension libraistandard function or appropriate languagspecific coding method®
extend signed values.

1 Use static analysis tools to help locate situations in which the conversion of variables might h
unintended consequences.

6.18.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Language definitions shouttefine implicit and explicit conversions in a way that prevents alteration of
the mathematical value beyond traditional rounding rules

6.19 Choice of Clear Names[NAI]

6.19.1 Description of application vulnerability

Humanssometimeschoose similar or identical names for objects, types, aggregates of types, subprograms and
modules. They tend to use characteristittzat are specific to the native language of the software develdaper

aid in this effort, such as use of mixedsingunderscores and periodsy use of plural and singular forms to
support the separation of items with similar nameSimilarly, development conventions sometimes use casing
for differentiation for example all uppercase for constants).

Human cognitive pralems occur when different (but similar) objects, subprograms, types, or constants differ in
name so little that human reviewers are unlikely to distinguish between them, or when the systessowp
entities to a single entity.

Conventions such dhe useof capitalization and singular/plural distinctionmaywork in small and medium
projects, but there are a number of significant issues to be considered:

9 Large projects often have mixed languages and such converiensten languagespecific.

1 Many imgementations support identifiers that contain international character sgtd some language
character sets have different notions of casing and plurality.

91 Different wordforms tend to be language and dialesgiecific, such as a pidgin, and may be meaasy|
to humans that speak other dialects.

© ISTIEC2012¢ All rights reserved 53

WG 23/N 027 Baseline Edition 2TR 24772

An important general issue is the choice of names that differ from each other negligibly (in human terms), for
example by differing by only underscores, (none, """ "), plurals ("s"), visimilar charactergsuch as "I" and
"1","O" and "0"), or underscores/dashes"("_"). [There is also an issue where identifiers appear distinct to a
human but identical to the computer, such as FOO, Foo, and foo in some computer lang@geagdter sets
extended with dacritical marks and nehatin characters may offer additional problentSome languages or their

implementations may pay attention to only the finscharacters of an identifier.

The problems described abowee different from overloading or overriding veine the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using
reserved names which can lead to a conflict with the reserved use and the use of which may or may not be
detected at ompile time.

Name confusion can lead to the application executing different code or accessing different objects than the writer
intended, or than the reviewers understoodhis can lead to outright errors, or leave in place code that may
executesometimein the future with unacceptable consequences

Although most such mistakes are unintentional, it is plausible thethasagescan be intentional, if masking
surreptitious behaviour is a goal.

6.19.2 Crossreference

JSF AV Rules:-88

MISRA C 2004: 1.4

CERT C guidiees: DCLOZ
AdaQualityand Style Guide: 3.2

6.19.3 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data element (that was missed by human review) can
result in unintended behaviour.anguage processors willtmmake a mistake in name translation, but human
cognition limitations may cause humans to misunderstand, and therefore may be missed in human reviews.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicabléainguages with the following characteristics:

1 Languages with relatively flat name spaeéi be more susceptibleSystems with modules, classes,
package€an use qualificatioto disambiguate names that originate from different parents.

1 Languages thatrovide preconditionspost conditionsinvariance and assertionsr redundant coding of
subprogram signatureiselp to ensure that the subprograms in the module will behave as expected, but
do nothing if different subprograms are called.

1 Languages that ¢at letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.19.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its #a# in the following ways:

54 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Implementers can create coding standards that provide meaningful guidance on name selection and use.
Goodlanguage specific guidelines could eliminate most problems.

1 Use static analysis tools to show the target of calls andssms and to produce alphabetical lists of
names. Human review cathen often spot the names that are sorted at an unexpected locatiowhich
look almost identical to an adjacent name in the.list

1 Use static tools (often the compiler) to detect declapat that are unused.

1 Use languages with a requirement to declare names before use or use available tool or compiler options
to enforce such a requirement.

6.19.6 Implications for standardization

In future standardization activities, the following itentwsild be considered:

1 Languages that do not require declarations of names should consider providing an option that does
impose that requirement.

6.20 Dead Store [WXQ]

6.20.1 Description of application vulnerability

A variable's value is assigned but nesebsequentiyused either because the variable is not referenced again, or
because a second value is assigned before the first is Udd@dmaysuggest that the design has bee
incompletely or inaccurately implementefbr example} @ f dzS Kl & 06SSy ONBIF ISR Iy

This vulnerability is very similar 621 Unused VariablgYZ&

6.20.2 Cross reference

CWE:

563. Unused Variable
MISRA C++ 2008:14 and 01-6
CERT C guidelines: MS€13
See als®.21 Unused Variabl€YZ$

6.20.3 Mechanism of failure

A variable is assigned a value but this is newbsequentlyused.Such arassignment is then generally referred to
as a dead store.

A dead storanay beindicative of careless programming or of a design or coding easmither the use of the

value was forgotten (almost certainly an error) or the assignment was performed even though it was not needed
(at best inefficient).Dead stores may also arise as the result of mistyping the name of a variable, if the mistyped
name mattes the name of a variable in an enclosing scope.

There are legitimate uses for apparent dead stores. For example, the value of the variable might be intended to
be read by another execution thread or an external device. In such cases, though, the \sir@alitebe marked

© ISTIEC2012¢ All rights reserved 55

WG 23/N 027 Baseline Edition 2TR 24772

as volatile. Common compiler optimization techniques will remove apparent dead stores if the variables are not
marked as volatile, hence causing incorrect execution.

A dead store is justifiablié, for example:

1 The code has beeautomatically generated where it is commonplace to find dead stores introduced to
keep the generation process simple and uniform

i The code ignitializinga sparse data set, where all members are cleased, thenselected values
assigned a value.

6.20.4 Applic able language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:
1 Anyprogramming language that provides assignment.

6.20.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use static analysis to identify any dead stores in the program, and ensure that there is a justification for
them.

i If variables are intended to be accesdmdother execution threads or external devices, mark them as
volatile.

1 Avoid declaring variables of compatible types in nested scopes with similar names.

6.20.6 Implications for standardization
In future standardization activities, the following itentssild be considered:
9 Languages should considamovidingoptional warning messagédsr dead store.

6.21 Unused Variable [YZ]

6.21.1 Description of application vuln erability

An unused variable is one that is declared but neither read nor written in the prograim type of error suggests
that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocudus they may povide memory space that attackers could use in
combination with other techniques

This vulnerability isimilarto 6.20 Dead Stor¢WXQ if the variable is initialized butever used

6.21.2 Cross reference

CWE:
563. Unused Variable

56 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

MISRA C++ 2008:183
CERT C guidelines: MSQ13
See als®.20 Dead StoréWXQ

6.21.3 Mechanism of failure

A variable is declared, but never us@the existence of an unused variable may indicate a design or coding error

Becauseompilers routinely diagnose unuséatalvariables, their presencmay bean indication that compiler
warnings are either suppresd or are being ignored.

While unused variables are innocuous, they may provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.21.4 Applicable language characteristics

This vulnerability description is intended to applicable to languages with the following characteristics:
1 Languages that provide variable declarations.

6.21.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in theafioly ways:
1 Enable detection of unused variables in the compiler.

6.21.6 Implications for standardization

In future standardization activities, the following items should be considered:
9 Languages should consider requiring mandatory diagnostics foednugiables.

6.22 Identifier Name Reuse [YOW]

6.22.1 Description of application vulnerability

When distinctentitiesare defined in nested scopes usirigetsame name it is possible thatogram logic will
operate on an entity other than the one intended

When it is notclear which identifier isised, the program could behave in ways that were not predicted by reading
the sourcecode. Thiscan befound by testing, but circumstances can arise (such as the values of the-samed
objects being mostly the same) where harmful consequences oddis. weakness can also lead to vulnerabilities
such as hidden channels where humans believe that important abpeet being rewritten or overwritten when in
fact other objects are being manipulated

For example, the innermost definition is deleted from the source, the program will continue to compile without a
diagnostic being issugbut execution can produce uneggted result$.

© ISTIEC2012¢ All rights reserved 57

WG 23/N 027 Baseline Edition 2TR 24772

6.22.2 Cross reference

JSF AV Rules: 120 and B35

MISRA C 2005:2,5.5, 5.6, 5.7, 20.1, 20.2

MISRA C++ 2008:10-2, 210-3, 22104, 210-5, 2106, 170-1, 170-2, and 170-3
CERT C guiliies: DCLOLC andDCL3ZC

AdaQualityand StyleGuide: 5.6.1 and 5.7.1

6.22.3 Mechanism of failure

Many languages support the concept of sco@ne of the ideas behind the concept of scope is to provide a
mechanism for the independent definitiasf identifiers that may share the same name.

For instare, in the following code fragment:

int some_vatr,
L
intt_var;
int some_var; /* definition in nested scope */
t var = 3;
some_var = 2;
}

an identifier calledsome_var has been defined in different scopes.

If either the definition osome_var ort_var that occurs in the nested scope is deletéar example when the
d2dzNOS Aada Y2RATFTASRO AG A& ySOSaal NB {faderRebpebdelStesl f 2
the definition oft_var but fails to delete the statement thatferences it, then most languages require a

diagnostic to be issuedijch ageference to undefined variable However, if the nested definition glome_var

is deleted but the reference to it in the nested scope is not deleted, thediagnostic will e issued (because the
reference resolves to the definition in the outer scope).

In some cases neanique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the impltatien considers to be distinct. For
example, in the following code fragment:

extern int global_symbol_definition_lookup_table_a[100];
extern int global_symbol_definition_lookup_table b[100];

the external identifiers are not unique on implementations whenly the first 31 characters are significant. This
situation only occurs in languages that allow multiple declarations of the same identifier (other languages require
a diagnosti message to be issued).

A related problem exists in languages that allmyerloading or overriding of keywords or standard library
function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced.

58 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Definitions for new identifiers should not use a name that is already visible withisdbpe containing the new
definition. Alternately,utilize languagespecific facilities that check for and prevent inadvertent overloading of
names should be used.

6.22.4 Applicable language characteristics
This vulnerability is intended to be applicaltb languages with the following characteristics:

1 Languages that allow the same name to be used for identifiers defined in nested scopes.
1 Languages where unique names can be transformed inteumdque names as part of the normal tool
chain.

6.22.5 Avoid ing the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Ensure that a definition of aentity does not occur in a scope where a differentity with the same
name s accessible and can be used in the same con#&xXanguagespecific project coding convention
can be used to ensure that such errors are detectabith static analysis

1 Ensure that a definition of a@ntity does not occur in a scope where a differentity with the same
name is accessible and has a type that permits it to occur in at least one context where tantiiystan

occur.

1 Uselanguage features, if any, which explicitly mark definitions of entities that are intended to hide other
definitions.

9 Develop or use tools that identify name collisions or reuse when truncated versions of hames cause
conflicts

1 Ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to besed, and document all assumptions.

6.22.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Languages should require mandatory diagnostics for variables with the same name in nested scopes.

1 Languages should require mandatory diagnostics for variable names that exceed the length that the
implementation considers unique.

1 Languages should consider requiring mandatory diagnostics for overloading or overriding of keywords or
standard library functio identifiers.

6.23 Namespace Issues[BJL]

6.23.1 Description of Application Vulnerability

If a language provides separate, Roierarchical namespacea usercontrolled ordering of namespacgeand a
means to make names declared in these name spaces directly visible to an application, the potential of

© ISTIEC2012¢ All rights reserved 59

WG 23/N 027 Baseline Edition 2TR 24772

unintentional and possible disastrous change in applicatigimaviourcan arise, when names are added to a
namespacealuring maintenance.

Namespaces include constructs like packages, modules, libraries, classes or any other means of grouping
declarations for import into other program units.

6.23.2 Crossreferences
MISRA C++ 2008:3-1, 7-3-3, 7-3-5, 145-1, and 160-2
6.23.3 Mechanism of Failure

The failure is best illustrated by an exampkamespacdNl1 provides the name\ but not B; Namespac®&l2
provides the namd but not A. The application wishes to ugefrom N1andB from N2. At this point, there are
no obvious issuesThe application chooses (or needs to) import the namespaces to obtain names for direct
usagefor an example.

UseN1, N2; ¢ presumed to make all names NiL and N2 directly visible
é X = A + B;
The semantics of the above example are int@itand unambiguous.

Later, during maintenance, the nanBds added taN1. The change to the namespace usually implies a
recompilation of dependent unitsAt this point, two declarations d are applicable for the use &in the above
example.

Some laguages try to disambiguate the above situation by stating preference rules in case of such ambiguity
among names provided by different name spacksin the above examplé\1is preferred oveN2, the meaning

of the use oBB changes silently, presumirigat no typing error arisesConsequently the semantics of the
program change silently and assuredly unintentionally, since the implemeniét cdnnotassume that all users
of N1would prefer to take any declaration 8ffrom N1 rather than its previoa namespace.

It does not matter what the preference rules actualg, as long as the namespaces are mutafilbe above
example is easily extended by addiagp N2 to show a symmetric error situation for a different precedence rule.

Ifalanguage suppoli a 2 @SNI 2F RAy3d 2F &dzo LINPAINI Yas GKS y2iAz2y
extended to mean not only the same name, but also the same signature of the subprogoamulnerabilities
associated with overloading and overriding, $e22 Identifier Name Reud& OW. In the context of namespaces,
however, adding signature matching to the name binding process, merely extends the describednpiraih

simple names to full signatures, but does not alter the mechanism or quality of the described vulnerability. In
particular, overloading does not introduce more ambiguity for binding to declarations in different name spaces.
This vulnerability not wly creates unintentional errordt also can be exploited maliciously, if the source of the
application and of the namespaces is known to the aggressor and one of the namespaces is mutable by
attacker.

60 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.23.4 Applicable Language Characteristics

Thevulnerability is applicable to languages with the following characteristics:
1 Languages that support ndrierarchical separate namgpaces, have means to import all names of a
YIEYSaLlk OS agK2f SaltS¢ F2N RANDEL@motgindtiple impoied K| @S
direct homographs. All three conditions need to be satisfied for the vulnerability to arise.

6.23.5 Avoiding the Vulnerability or Mitigating its Effects

Software developers can avoid the vulnerability or mitigatdlieffects in the ftlowing ways:

T ' §2ARAY 3 GoK2fSaltSé AYLR2NI RANBOGAGSaA
T 'aAy3a 2yfte aStSOGAGS aairAydatsS yIYSE AYLRNI RANBC
provided that the language offers the respective capabilities)

6.23.6 Implications for Standardizatio n
In future standardization activities, the following items should be considered:

1 Languages should not have preference rules among mutable namespaces. Ambiguities slmwdticdbe
and avoidable by the useligr example by using names qualified by theiriginating namespace.

6.24 Initialization of Variables [LAV]
6.24.1 Description of application vulnerability

Reading a variable that has natdn assigned a value appropriate to its type can cause unpredictable execution in
the block that uses the value of the variable, and has the potential to export bad values to callers, or caafse out
bounds memory accesses.

Uninitialized variable usagefigquently not detected until after testing and often when the code in question is
delivered and in use, because happenstance will provide variables with adequate values (such as default data
settings or accidental lefvver values) until some other chamgxposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, or elaboration) may
have alternate paths that can read values before they are $bits can happen in straight sequential code but is
more prevalent when concurrency or goutines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when objects
are incrementally built, or fields are added underimanance.

When possible and supported by the language, whsbtacture initialization is preferable to fieloy-field

initialization statements, and named association is preferable to positional, as it facilitates human review and is
less susceptible taflures under maintenancer-or classes, the declaration and initialization may occur in
separate modules. In such cases it must be possible to show that every field that needs an initial value receives
that value, and to document ones that do not requiingial values.

© ISTIEC2012¢ All rights reserved 61

WG 23/N 027 Baseline Edition 2TR 24772

6.24.2 Cross reference

CWE:

457. Use of Uninitialized Variable
JSF AV Rules: 71, 143, and 147
MISRA C 2004: 9.1, 9.2, and 9.3
MISRA C++ 2008:531
CERT C guiliiees: DCL1L and EXP33
AdaQualityand Style Guide: 5.9.6

6.24.3 Mechanism of failure

Uninitialized objects may havevalidvaluesvalidbut wrong values, ovalidand dangerous valuedarong
values could cause unbounded branches in conditionals or unbounded loop executions, or could simply cause
wrong calculations and resslt

There is a special case of pointers or access types. When such a type contains null values, a bound violation and
hardware exception can result. When such a type contains plausible but meaningless values, random data reads
and writes can collect errommels data or can destroy data that is in use by another part of the program; when

such a type is an access to a subprogram with a plausible (but wrong) value, then either a bad instruction trap
may occur or a transfer to an unknown code fragment can ocailirof these scenarios can result in undefined
behaviour.

Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarily dangerous in safety
situations.

6.24 .4 Applicable language characteristics

This vulnerability desigtion is intended to be applicable to languages with the following characteristics:
9 Languages that permit variables to be read before they are assigned.

6.24.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulneitiy or mitigate its ill effects in the following ways:

1 The general problem of showing that all objects are initialized is intractable; hence developers must
carefully structure programs to show that all variables are set before first read on everyhpatighout
the subprogram.Where objects are visible from many modules, it is difficult to determine where the first
read occurs, and identify a module that must set the value before that rgdiden concurrency,
interrupts and coroutines are presentliecomes especially imperative to identify where early
initialization occurs and to show that the correct order is set via program structure, not by timing, OS
precedence, or chance.

9 The simplest method is to initialize each object at elaboration timenandédiately after subprogram
execution commences and before any branchéshe subprogram must commence with conditional
statements, then the programmer is responsible to show that every variable declared and not initialized

62 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

earlier is initialized on e&cbranch. However, the initial value must be a sensible value for the logic of the
program. Socalled "junk initialization", for example, setting every variable to zero, prevents the use of
tools to detect otherwise uninitialized variables.

1 Applicationscan consider defining or reserving fields or portions of the object to only be set fulign
initialized. However, this approach has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find thenitialized variables.

9 It should be possible to use static analysis tools to show that all objects are set before use in certain
specific cases, but as the general problem is intractable, programmers should keep initialization
algorithms simple so that thegan be analyzed.

1 When declaring and initializing the object togethiéthe language does not require that the compiler
statically verify that the declarative structure and the initialization structure matcle static analysis
tools to help detect anyismatches.

1 When setting compound objects, if the language provides mechanisms to set all components together, us
those in preference to a sequence of initializations as this helps coverage analysis; otherwise use tools th
perform such coverage analysisd document the initializationDo not perform partial initializations
unless there is no choice, and document any deviations from 100% initialization.

1 Where default assignmeatofmultiple components are performed, explicit declaration of the component
names and/or ranges helps static analysis and identification of component changes during maintenance.

1 Some languages have named assignments that can be used to build reviewable assignment structures
that can be analyzed by the language processor for cetapéss. Languages with positional notation
only can use comments and secondary tools to help show correct assignment.

6.24.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Some languagdsave ways to determine if modules and regions are elaborated and initialized and to
raise exceptions if this does not occlranguages that do not could consider adding such capabilities.

! Languages could consider setting aside fields in all objectgaifigif initialization has occurred,
especially for security and safety domains.

1 Languages that do not support wheddject initialization could consider adding this capability.

6.25 Operator Precedence/Order of Evaluation [JCW
6.25.1 Description of application vulnerability

Each language provides rules of precedence and associativity, for each expression thad®peérdrio which
2LISNI (2 NBR D ¢KS&S NHzZ Sa INB Ffaz2 (yz26y |a GaNRdAzZLAY

Experience and experimental evidence shows that developers can have incorrect beliefs about the relative
precedence of many binary operators. SBeyeloper beliefs abolinary operator precedenc€ Vu, 18(4):14
21, August 2006

6.25.2 Cross reference

JSF AV Rules: 204 and 213

© ISTIEC2012¢ All rights reserved 63

WG 23/N 027 Baseline Edition 2TR 24772

MISRA C 2004: 12.1, 12.2, 12.5, 12.6, 13.2, 19.10, 19.12, and 19.13

MISRA C++ 20085-1, 45-2, 45-3, 50-1, 50-2, 52-1, 53-1, 160-6, 163-1, and 163-2
CERT C guiliiees: EXPOC

AdaQualityand Style Guide: 7.1.8 and 7.1.9

6.25.3 Mechanism of failure

In Cand C+¢+the bitwise operatorgbitwise logical and bitwise shift) are sometimes thoughby the

LINE AN YYSNI KFE@AYy3T AAYATI NI LINBOSRSYyOS G2 | NRiGK22SGAO
06 x&(d ydza 2y S A& Sldzkf G2 T SNRBE O X&H ==LONBETNIYYSWIINI f X AT KIlK
andedwith LisequaltozBlR ¢ 5 ¢ KSNBlF & (GKS 2LISNI 02NJ LINBOSRSYy OS NXz
'a & O2A¥=0Xz(IINE R dzOmeypteddaFzerd, theéh Qitwiseand the result withké ¥ LINB RdzOAy 3 ¢

O2yaidtydo TSNRsE O2ydNINE (2 GKS LINRPINI YYSNDRAa AydSyid

Examples fsm an opposite extreme can be found in programs written in, A®lich is noteworthy for the

absenceoBnyRA A G AY Ol A2y a 2F LINSOSRSYyOSo aryffc OLYYRY i BY RRKY
LINE R dzar@sb@luscé = ¢ K S NB lfoam right-tp-leftiassdeiativi. INR R da@I8s&, timesaé @

6.25.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages whose precederered associatity rules are sufficiently complex that developers do not
remember them.

6.25.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Adopt programming gdelines (preferably augmented by static analysis). For example, consider the rules
itemized above frondSFAV[15], CERT [11]or MISRA €12].

1 Useparenthegsaround binary operator combinations that are known to be a source of efoor (
example mixed arithmetic/bitwise and bitwise/relational operator combinations).

1 Break up complex expressions and use temporary variables to make the order clearer.

6.25.6 Implications for standardization
In future standardizatiomctivities the following items shodlbe considered:

9 Language definitions should avoid providing precedence or a particular associativity for operators that are
not typically ordered with respect to one another in arithmetic, and instead require full parenthesization
to avoid misinterpretathn.

64 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.26 Side-effects and Order of Evaluation [SAM]

6.26.1 Description of application vulnerability

Some programming languag allow subexpressions to cause sitfects (such as assignment, increment, or
decrement). For example, some programming languages permit suckfades, and if, within one expression
6 & dzO¥k= v[+4 d € ,tiwo or more sideeffects modify the samelgject, undefined behaviour results.

Some languages allow subexpressions to be evaluated in an unspecified grdegrgn removed during
optimization If these subexpressions contain siéfects, then the value of the full expression can be dependent
upon the order of evaluation. Furthermore, the objects that are modified by thedfiiidets can receive values
that are dependent upon the order of evaluation.

If a program containthese unspecified or undefindaehavious, testing the program and seeittigat it yields the
expected results may give the false impression that the expression will always yield the expected result.

6.26.2 Cross reference

JSF AV Rules: 157, 158, 166, 204, 204.1, and 213
MISRA C 20042.1-12.5

MISRA C++ 2008:051

CERT C gulihes: EXPXC, EXP3C

AdaQualityand Style Guide: 7.1.8 and 7.1.9

6.26.3 Mechanism of failure

Whensubexpressions with side effects are used within an expressioryrispecifiedorder of evaluation can
result ina program producingifferent resultson different platforms, or even at different times on the same
platform. For exampleconsider

a = f(b) + g(b);

wheref andg both modifyb. Iff(b) is evaluated first, then thb used as a parameter tg(b) may be a
different value than ifj(b) is perfamed first. Likewise, t(b) is performed firstf(b) may be called with a
different value ot.

Other examples of unspecified order, or even undefined behaveaur be manifestedsuchas
a=f(i) + i++;

or
afi++] = b[i++];

Parenthegs around expressits can assist in removing ambiguatyout grouping but the issues regarding side
effects and order of evaluatioare not changed by the presencepdrenthe®s; consider

j =it * i+

© ISTIEC2012¢ All rights reserved 65

WG 23/N 027 Baseline Edition 2TR 24772

whereevenif parenthegs are placedaround thei++ subexpressionsindefined behavioustill remains (All
examples use the syntax ofo€Javdor brevity; the effects can be created in any language that allows functions
with sideeffects in the places where C allows the increment operatjons

The wpredictable nature of the calculation means that the program cannot be tested adequately to any degree
of confidence.A knowledgeable attacker can take advantage of this characteristic to manipulate data values
triggering execution that was not anticipt by the developer.

6.26.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permitxpressons to contain subexpressions with side effects
1 Larguages whose subexpressions eoenputed in an unspecified ordering.

6.26.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Make use of one or more pgnpamming guidelines which (a) prohibit these unspecified or undefined
behaviours, and (b) can be enforced by static analysis. (See JSF AV and MISRA rules in Cross reference
clause[SAM])

1 Keep expressions simple. Complicated code is prone to error draidifo maintain.

6.26.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 In developinghew or revised languages, give consideration to langdiegiresthat will eliminate or
mitigate this vulnerability such as pure functions

6.27 Likely Incorrect Expression [KOA]

6.27.1 Description of application vulnerability

Certain expresions are symptomatic of what is likely to be a mistake made by the progranitherstatement is
not contrary to the language standartut is unlikely to béntended The statement may have no effect and
effectively is a null statement or may introduaa unintended sideeffect. A common example is the use®in
anif expression in @here the programmer meant to do an equality test using theoperator. Other easily
confused operators in C are the logical operators such&®r the bitwise operator&, or vice versa It isvalid

and possible that the programmer intended to do an assignment withinfthexpression, but due to this being a
common error, a programmer doing so would be using a poor programming practice. A less likelgnoeciout
still possible is the substitution ef= for = in what is supposed to be an assignment statement, but which
effectively becomes a null statementhese mistakes may survive testing only to manifest themselves in
deployed code where they may Ipealiciously exploited.

66 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.27.2 Cross reference

CWE:
480. Use of Incorrect Operator
481. Assigning instead of Comparing
482. Comparing instead of Assigning
570. Expression is Always False
571. Expression is Always True
JSF AV Rules50 and 166
MISRAC2004 12.3,12.4,12.13, 13.1, 13.7, and 14.2
MISRAC++2008: 01-9, 50-1, 62-1, and 65-2
CERT C guiliies: MSCOZ and MSC0GB

6.27.3 Mechanism of failure

Some of the failures are simply a case of programmer carelessness. Substitatimstefid of==in a Boolean

test is easy to do and mostabd C+¥rogrammers have made this mistake at one time or another. Other
instances can be the result of intricaciedtud language definition that specifies what part of an expressiontmus
be evaluated For instance, having an assignment expression in a Boolean statement is likely making an
assumption that the complete expression will be executed in all cases. However, this is not always the case as
sometimes the truthvalue of the Boolan expression can be determined after only executing some portion of the
expression. For instance:

if (@a==b)| | (c=(d -1))
Should(a==b) be determired to be true, then there is no need for the subexpresgwr(d - 1)) to be
executed and as such, the assignm@nt(d - 1)) will not occur.

Embedding expressions in other expressions can yield unexpected rdasgltsment and decrement operators
(++ and--) can also yield unexpected results when mixed into a complex expression.

Incorrecty calculated results can lead to a wide variety of erroneous program execution

6.27.4 Applicable language characteristics

This vulnerability description is intended to dpplicable to languages with the following characteristics:
1 All languages are susceptible to likely incorrect expressions.

6.27.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its laff in the following ways:

1 Simplify expressions.

1 Do not use assignment expressions as function parameters. Sometimes the assignment may not be
executed as expected. Instead, perform the assignment before the function call.

1 Do not perform assignmentsitliin a Boolean expression. This is likely unintended, buisihot, then
move the assignment outside of the Boolean expression for clarity and robustness.

© ISTIEC2012¢ All rights reserved 67

WG 23/N 027 Baseline Edition 2TR 24772

1 On some rare occasions, some statements intentionally do not have side effects and do natarausle
flow to change. These should be annotated through comments and made obvious that they are
intentionally neops with a stated reason. If possible, such reliance on null statements should be avoided.
In general, except for those rare instancels statements should either have a side effect or cause control
flow to change.

6.27.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Languages should consider providing warnings for statémthat are unlikely to be right such as
statements without side effectsA null (neop) statement may need to be added to the language for
those rare instances where an intentional null statement is need¢alving a null statement as part of
the language will reduce confusion as to why a statement with no side effects is present in code.

1 Languages should consider not allowing assignments used as function parameters.

Languages should consider not allowing assignments within a Boolean expression.

1 Languag definitions should avoid situations where easily confused symboth(as- and==, or; and
., orl= and/=) arevalidin the same context. For examptejs not generallyalidin anif statement in
Javabecause it does not normally retuia boolean value.

=

6.28 Dead and Deactivated Code [XY(Q

6.28.1 Description of application vulnerability

Dead and Deactivated code is code thasexin the executable, but which can never be executed, either because
there is no call path that leads to fo¢ example a function that is never called), or the path is semantically
infeasible for example its execution depends on the state of a cdraial that can never be achieved).

Dead and Deactivated codeay beundesirable because fhayindicate the possibility of a coding erroA
aSOdzNAGe AaadzS Aa | f inpctetdI2Vidy sabefy Standafds prohibit2lead cadebécalBeS | ¢
dead code is not traceable to a requirement.

Also covered in this vulnerability is code which is believed to be dead, but which is inadvertently executed.

Dead and Deactivated code is considesegarately from the description of Unused Variable, whigiravided
by[YZ$

6.28.2 Cross reference

CWE:
561. Dead Code
570. Expression is Always False
571. Expression is Always True
JSF AV Rules: 127 and 186
MISRA C 2004: 2.4 and 14.1
MISRA C++ 20083161 to 0-1-10, 27-2, and 27-3

68 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

CERT C guidelines: MS@)@nd MSC12
DO178B/C

6.28.3 Mechanism of failure

DO 178B definePeadandDeactivated codeas:

1 Dead code; Executable object code (or data) whicéinnot be executed (code) or used (data) in an
operational configuration of the tasy computer environment and is not traceable to a system or
software requirement.

1 Deactivated code Executable object code (or data) which by design is either (a) not intended to be
executed (code) or used (data), for exampleast of a previously developed software component, or (b)
is only executed (code) or used (data) in certain configurations of the target computer environment, for
example, code that is enabled by a hardware pin selection or software programmed options.

Dea code is code that exists in an application, but which can never be executed, either because there is no call
path to the codefpor example a function that is never called) or because the execution path to the code is
semantically infeasibl&sin

integ eri=0;

if (i == 0)
then fun_a();
else fun_b();

fun_b is dead code, as onfyun_a can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can algmedéd on the linking of separately compiled modules.

The presence of dead code is not in itself an erfirere may also béegitimate reasosfor its presence, for
example:

Defensive code, only executed as the result of a hardware failure.

Code that is pd of a library not required in this application.

Diagnostic code not executed in the operational environment.

Code that is temporarily deactivatdmit may be needed soon. This may occur as a way to make sure the
code is still accepted by the languaganslator to reduce opportunities for errors when it is reactivated.

1 Code that is made available so that it can be executed manually via a debugger

=A =4 =4 =

{ dzOK O2RS Yl & 0S NBTHaNKdddode thhtds tharRdy ineni. A gF G SREé @

There is a semdary consideration for dead code in languages that permit overloading of functions and other
constructsthat usecomplex name resolution strategie$he developer may believe that some code is not going
to be used (deactivated), but its existence in gfregram means that it appears in the namespace, and may be
selected as the best match for some use that was intended to be of an overloading funhiahis, although the
developer believes it is never going to be used, in practice it is used in gmeéeto the intended function.

© ISTIEC2012¢ All rights reserved 69

WG 23/N 027 Baseline Edition 2TR 24772

However, it may be the case that because of some other error, the code is rendered unreachable. Therefore, any
dead code should be reviewed and documented.

6.28.4 Applicable language characteristics

This vulnerability desiption is intended to be applicable to languages with the following characteristics:
1 Languages that allow code to exist in the executable that can never be executed.

6.28.5 Avoiding the vulnerability or mitigating its effects

Software developers can avdige vulnerability or mitigate its ill effects in the following ways:

1 Thedeveloper shoulegndeavorto removedead code from an applicatiamless its presence serves a
purpose

1 When a developer identifies code that is dead because a conditimmaistenty evaluates to the same
value, this could be indicative of an earlier bargt could be indicative of inadequate path coverage in the
test regimen. Additional investigation may be needed to ascertain why the same value is occurring

1 The developer shouldientify any dead code in the application, and provide a justification (if only to
themselves) as to why it is there.

1 The developer should also ensure that any code that was expected to be unused is dcioathented
as dead code.

1 The developer shouldpply standard branch coverage measurement tools and ensure by 100% coverage
that all branches are neither dead nor deactivated

i The developer shouldse analysis tools to identify unreachable code.

6.28.6 Implications for standardization
[None]

6.29 Switch Statements and Static Analysis [CLL]
6.29.1 Description of application vulnerability

Many programming languages provideonstruct, such as@like switch statement, that chooses among
multiple alternative control flows based upon the evaluated result of an expres3iba.use of such constructs
may introduce application vulnerabilities if not all possitdsesappear within the switctor if control
unexpectedly flows from one alternative to another.

6.29.2 Cross reference

JSF AV Rules: 148, 193, 194, 195, and 196
MISRA C 2004: 15.2, 15.3, and 15.5

MISRA C++ 2008:4-3, 64-5, 64-6, and 64-8
CERT C giglines: MSC0OC

AdaQualityand Style Guide: 5.6.1 and 5.6.10

70 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.29.3 Mechanism of failure

The fundamental challenge when usingwaitch statement is to make sure that all possible cases are, in fact,
treated correctly

6.29.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

f Languages thatantain a construct, such assavitch statement, that provides a selection among
alternative control flows based on the duation of an expression.

1 Languages that do not require full coverage sfxdtch statement.

1 Languages that provide a default case (choice)switch statement.

6.29.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoidetvulnerability or mitigate its ill effects in the following ways:

1 Base the switch choice upon the valueanfexpression that has a small number of potential values that
can be statically enumerated. In languages that provide them, a variable of an esti@héype is to be
preferred becausa possible set of values is known statically and is small in number (as compared, for
example, to the value set of an integer variablé)here it is practical to statically enumerate the
switched type, it is preferabl® omit the default case, because the static analysis is simplified and
because maintainers can better understand the intent of the original programiMiren one must
switchbased upon the value of an instance of some other typis,iecessary to hawedefault case,
preferably to be regarded as a serious error condition.

T ' @2AR aFf26Ay 3 (KNP dz3 Een iffchiictly ifpe®entdd, igisSdifficudt fol v 2 (i K
reviewers and maintainers to distinguish whether the construct was intendedaor ésror of omissiofi
In cases where flosthrough is necessary and intended, an explicitly coded branch may be prefévable
clearly mark the intent.Providing comments regarding intention can be helpful to reviewers and
maintainers.

1 Perform static aalysis to determine if all cases are, in fact, covered by the c@diete that the use of a
default case can hamper the effectiveness of static analysis since the tool cannot determine if omitted
alternatives were or were not intended for default treatmte)

1 Other means of mitigation include manual review, bounds testing, tool analysis, verification techniques,
and proofs of correctness.

6.29.6 Implications for standardization
In future standardizatiomctivities the following items should be considered

1 Language specifications could require compilers to ensure that a complete set of alternatives is provided
in cases where the value set of the switch variable can be statically determined.

4 Using multiple labels on individual alternatives is not a viotatibthisrecommendation though.

© ISTIEC2012¢ All rights reserved 71

WG 23/N 027 Baseline Edition 2TR 24772

6.30 Demarcation of Control Flow [EOJ]

6.30.1 Description of application vulnerability

Some programming languages explicitly mark the end df astatement or a loop, whereas other languages
mark only the ed of a block of statements. Languages of the latter category are prone to oversights by the
programmer, causingnintended sequences of control flow.

6.30.2 Cross reference

JSF AV Rules: 59 and 192

MISRA C 2004: 14.8, 14.9, 14.10, and 19.5

MISRA C++ 2008-3-1, 64-1, 64-2, 64-3, 64-8, 65-1, 6:5-6, 6-6-1 to 6:6-5, and160-2
Hatton 18: Control flowg if structure

AdaQualityand Style Guide3, 5.6.1through5.6.10

6.30.3 Mechanism of failure

Programmers may rely on indentation to determine inabasof statements within constructs. Testing of the
software may not reveal that statementisat appear to be included in a construct (due to formatting) actually lay
outside of it because of the absence of a terminatbtoreover, for a nestedf - then - els e statement the
programmer may be confused about whi€h statement controls theslse part directly This anlead to
unexpected results.

6.30.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languedgtbsthe following characteristics:

1 Languages that contain loops aconditionala G I 6§ SYSy da GKIF G N8B y2i SELX A
construct.

6.30.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerapibr mitigate its ill effects in the following ways:

1 Adopt a convention for marking the closing of a construct that can be checked by a tool, to ensure that
program structure is apparent.

1 Adopt programming guidelines (preferably augmented by static aisalyEor example, consider the rules
itemized above from JSF AV, MISRA C, MISRA C++ or Hatton.

1 Other means of assurance might include proofs of correctness, analysis with tools, verification
techniguesor other methods

1 Pretty-printers and syntasaware alitors may be helpful in finding such problems, but sometimes disguise
them.

7 Include a final else statement at the endibf-X-else -if constructs to avoid confusion.

1 Always enclose the body of statements ofitin while , for , do, or other statements potenally
introducing a block of codey 6 NF O® a2 MJa2 6 KSNJ RSYF NOIF G§A2Y AYRAOI
used.

72 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.30.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Specifierof languages should consider adding a mode that strictly enforces compound conditional and
f22LIAY 3 O2yaidNHzOG&a oA GédiS ELI2ZANOA G Qf SNMAYY3E (6AND yC5] S5

1 Specifiers of languages might consider explicit termination of loops and conditiateis&nts.

1 Specifiers might consider features to terminate named loops and conditionals and determine if the
structure as named matches the structure as inferred.

6.31 Loop Control Variables [TEX]

6.31.1 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs provide a methdédpmecifying an initial value for this loop control variable, a
test that terminates the loop and the quantity by which it should be decrementadcremented on each loop
iteration.

In some languages it is possible to modify the value of the loop cordri@ble within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

6.31.2 Cross reference

JSF AV Rule: 201
MISRA C 2004: 13.6
MISRA C++ 2008:5-1 to 6:5-6

6.31.3 Mechanism of failure

Readers of source code often make assumptions about what has been wrtteommon assumption is that a
loop control variable isot modified in the body of the loop. A programmer may write incorrect codedbas
this assumption.

6.31.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languages that permit a loop control variable to be modified in the body a§#sciated loop.
6.31.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Not modifying a loop control variable in the body of its associated loop body.

© ISTIEC2012¢ All rights reserved 73

WG 23/N 027 Baseline Edition 2TR 24772

1 Some languages, such aar@@ C++lo not explicitly specify which of the variables appearing in a loop
header is the control variabler the loop MISRAC[12] and MISRA C+H.6] have proposed algorithms
for deducing which, if any feéhese variables is the loop control variable in the programming languages C
and C++ (these algorithms could also be applied to other languages that supplikedd®loop).

6.31.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Language designers should consider the addition of an identifier type for loop control that cannot be
modified by anything other than the loop control construct.

6.32 Off-by-one Error [XZH]

6.32.1 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value. This
usually arises from one of a nin@r of situations where the bounds as understood by the developer differ from
the design, such as:

M Confusion between the need ferand<= or > and>= in a test.

9 Confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 whedehlging
structure is indexed from O; beginning an algorithm at O when the underlying structure is indexed from 1
(or some other start point); or using the length of a structure as its bound instead of the sentinel values.

1 Failing to allow for storagef@ sentinel value, such as thNaJLL string terminator that is used in the C
and C+#programming languages.

These issues arise from mistakes in mapping the design into a particular language, in moving between languages
(such as between languages where all arrays start at 0 and other languages where arrays start at 1), and when
exchanging data between languages with different default ab@ynds

The issue also can arise in algorithms where relationships exist betweeronentp, and the existence of a
boundsvalue changes the conditions of the test.

The existence of this possible flaw can also be a serious security hole as it can permit someone to surreptitiously
provide an unused location (such as 0 or the last elemtbiat)can be used for undocumented features or hidden
channels.

6.32.2 Cross reference

CWE:
193. Offby-one Error

6.32.3 Mechanism of failure

An offby-one error could lead to:

74 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

an outof bounds access to an array (buffer overflow),
incomplete comparisonsr calculation mistakes,

a read from the wrong memory location, or

9 anincorrect conditional.

= =4 =4

Such incorrect accesses can cause cascading errors or referemeeslitlocations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not fien exploited in attacks because they are difficult to identify and exploit externally,
but the cascading errors and boundargndition errors can be severe.

6.32.4 Applicable language characteristics

As this vulnerability arises because of an algoritherror by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

1 The language relies on the developer having implicit knowledge of structure start and end ifwlices (
example knowing whether arrays start atdy 1 ¢ or indeed some other value).
1 Where the language relies upon explisgundsvalues to terminate variable length arrays.

6.32.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate iefféicts in the following ways:

1 A systematic development process, use of development/analysis tools and thorough testing are all
common ways of preventing errors, and in this casepgfbne errors.

1 Where references are being made to structure indices thiedanguages provide ways to specify the
whole structure or the starting and ending indices explicitly é€xample Adaprovides xxx'First and
xxx'Last for each dimension), these should be used alwajgre the language doesn't provide e
constants can be declared and used in preference to numeric literals.

f 2KSNB (GKS fl y3adza 3S R2SayQi SyOl LjadzZ 4SS @F NRAI 6f &
through library objects and a coding standard developed that requires such arrap/tbe used via
those library objects, so the developer does not need to be explicitly concerned with mahagings
values.

6.32.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

9 Language should provide encapsulations for arrays that:
o Prevent the need for the developer to be concerned with explicit bounds values.
o Provide the developer with symbolic access to the array start, end and iterators.

© ISTIEC2012¢ All rights reserved 75

WG 23/N 027 Baseline Edition 2TR 24772

6.33 Structured Programming [EWD]

6.33.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to be human readable, less
underdandable, harder to maintain, more difficult to modify, harder to statically analyze, more difficult to match
the allocation and release of resourcesd more likely to be incorrect

6.33.2 Cross reference

JSF AV Rules: 20, 113, 189, 190, and 191
MISRAC 200414.4,145, and 20.7

MISRA C++ 2008:6-1, 6:6-2, 66-3, and 170-5
CERT C guitilees: SIG3Z

AdaQualityand Style Guide: 3, 4, 5.4, 5.6, and 5.7

6.33.3 Mechanism of failure

Lack of structured programming can lead to:

1 Memory or resource leaks.

1 Errorprone maintenance.

91 Design that is difficult or impossible to validate.

9 Source code that is difficult or impossible to statically analyze.

6.33.4 Applicable language characteristics
This vulnerability description is intended to be applicablatgguages with the following characteristics:

Languages that allow leaving a loop without consideration for the loop control.

Languages that allow local jummgm({o statemend.

Languages that allow ndocal jumpsgetimp /longj mpin the Cprogramming language).

Languages that support multiple entry and exit points from a function, procedure, subroutine or method.

=A =4 =4 =4

6.33.5 Avoiding the vulnerability or mitigating its effects

Use only those features of tirogramming language tha&nforce a logical structure on the program. The
program flow follows a simple hierarchical model that employs looping constructs stich asepeat , do, and
while .

Software developers can avoid the vulnerability or mitigatdlitsffects in the following ways:

Avoid using language features suctgato .

Avoid using language features suctcastinue and break in the middle of loops.
Avoid using language features that transfer control of the paagflow via a jump.
Avoid multiple exit points to a function/procedure/method/subroutine.

Avoid multiple entry points to a function/procedure/method/subroutine.

=A =4 =4 =4 =4

76 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.33.6 Implications for standardization
In future standardizatiomctivities the following iems should be considered:

1 Languages should support afayor structured programming through their constructs to the extent
possible.

6.34 Passing Parameters and Return Values [CS]

6.34.1 Description of application vulnerability

Nearly every procedural languageovides some method of process abstraction permitting decomposition of the
flow of control into routines, functionsudprograms, or methods(For the purpose of this description, the term
subprogram will be used.Jo have any effect on the computation, the subprogram must change data visible to
the calling program. It can do this by changing the value of aowal vaiable, changing the value of a

parameter, or, in the case of a function, providing a return vaBecause different languages use different
mechanisms with different semantics for passing parameters, a programmer using an unfamiliar language may
obtain unexpected results.

6.34.2 Cross reference

JSF AV Rules: 116, 117, and 118

MISRA C 2004: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, and 16.9
MISRA C++ 2008:3-2, 7-1-2, 84-1, 84-2, 84-3, and 84-4

CERT C guililees: EXP1Z and DCL33

AdaQualityand Style Guide: 5.2 and 8.3

6.34.3 Mechanism of failure

The mechanisms for parameter passing inclugg: by referencecall by copyandcall by name The last is so
specialized and sygorted by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subpvdlesm.
the subprogram references the corresponding formal paeger, it is actually sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed.If the actual argument is an expression or a constant, then the address of a tempordigriagsa
passed to the subprogram; this may be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal parameters
act as local variables/alues are passed between the actual argumseand the formal parameters by copying.
Some languages may control changes to formal parameters based on labels sugloats, orinout . There

are three cases to considarall by valudor in parametersicall by resulfor out parameters and function return
values; anctall by valueresultfor inout parameters.For call by value, the calling program evaluates the actual
arguments and copies the result to the corresponding forpsshmeters that are then treated as local variables

by the subprogramFor call byesult, the values of the locals corresponding to formal parameters are copied to

© ISTIEC2012¢ All rights reserved 77

WG 23/N 027 Baseline Edition 2TR 24772

the corresponding actual argumentgor call by valueesult, the values are copied irofn the actual arguments
at the beginning of the subprogram'’s execution and back out to the actual arguments at its termination.

The obvious disadvantage of call by copy is that extra copy operations are needed and execution time is required
to produce thecopies. Particularly if parameters represent sizable objects, such as large arrays, the cost of call by
copy can be highFor this reason, many languages also provide the call by reference mechanism. The
disadvantage of call by reference is that thdinglprogram cannot be assured that the subprogram hasn't

changed data that was intended to be unchang&ar example, if an array is passed by reference to a

subprogram intended to sum its elements, the subprogram could also change the values of ome @ements

of the array. However, some languages enforce the subprogram's access to the shared data based on the labeling
of actual arguments with modessuch asn , out , orinout or by constant pointers

Another problem with call by reference is unintbad aliasing. It is possible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in stokaggdprogram,
assuming the two formal parameters to be distinct, may treat them inappropriatety.exanple, if one codes a
subprogram to swap two values using the exclusivenethod, then a call tewap(x,x) will zero the value of
X. Aliasing can also occur between arguments andlnoal objects.For example, if a subprogram modifies a
non-local objectas a sideeffect of its execution, referencing that object by a formal parameter will result in
aliasing and, possibly, unintended results.

Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the programmer
to synthesize appropriate mechanism@&ften, the only available mechanism is to use call by copy to pass small
scalar values or pointer values containing addresses of data structOfesourse, the latter amounts to using call

by reference with no checking blge language processoin such cases, subprograms can pass back pointers to
anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects, such
arrays. The choice of mechanism may even be implementatlefined. Because the two mechanisms produce
different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem may occur if the called subprograns tailassign a value to a formal parameter that the
caller expects as an output from the subprograim.the case of call by reference, the result may be an
uninitialized variable in the calling program. In the case of call by copy, the result may bdabiinzate

initialization value provided by the caller is overwritten by an uninitialized value because the called program did
not make an assignment to the parametérhis error may be difficult to detect through review because the

failure to initializeis hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions. In such
cases, the evaluation of one argument might have gffects that result in a change to the value of another or
unintended aliasingImplementation choices regarding order of evaluation could affect the result of the
computation. This particular problem is describedSideeffects and Order of Evaluatiaause[SAM].

6.34.4 Applicable language characteristics

Thisvulnerability description is intended to be applicable to languages with the following characteristics:

78 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Languages that provide mechanisms for defining subprograms where the data passes between the calling
program and the subprogram via parameters and retvalues. This includes methods in many popular
object-oriented languages.

6.34.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use available mecimisms to label parameters as constants or with modesitikeout , orinout
1 When a choice of mechanisms is available, pass small simple objects using call by copy.
1 When a choice of mechanisms is available and the computational cost of copying is tolpesisiéarger
objects using call by copy.
1 When the choice of language or the computational cost of copying forbids using call by copy, then take
safeguards to prevent aliasing:
0 Minimize sideeffects of subprograms on nencal objects; when sideffects ae coded, ensure
that the affected noHocal objects are not passed as parameters using call by reference.
o0 To avoid unintentional aliasing, avoid using expressions or functions as actual arguments; instead
assign the result of the expression to a tempornagal and pass the local.
o Utilize tookor other forms of analysis to ensure that nobvious instances of aliasing are absent.
o Perform reviews or analysis to determine that called subprogratfidl their responsibilities to
assign values to all outip parameters.

6.34.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Programming language specifications could provide labsigeh asn , out , andinout Tt that control
0KS & dzo LINP FoNtd fofrfad patarte@S,5@d enforce the access.

6.35 Dangling References to Stack Frames [DCM]

6.35.1 Description of applica tion vulnerability

Many languages allow treating the address of a local variable as a value stored in other variables. Examples are
the application of the address operator im€C+E 2 NJ 2F (G KS W! 00S&a.l@dmed! RRNEB:
languages, this facility is also used to model thelmgleference mechanism by passing the address of the actual
parameter byvalue. An obvious safety requirement is that the stored address shall not be used after the lifetime
of the local variable has expiredt KA a aAddz 6A2y OFly 6S RSaAaONAOGSR Fa |

6.35.2 Cross reference

CWE:
562. Return of Stack Variable Address
JSF AV Rule: 173
MISRA C 2004: 17.6 and 21.1
MISRA C++ 2008:3-1, 7-5-1, 7-5-2, and 7-5-3

© ISTIEC2012¢ All rights reserved 79

WG 23/N 027 Baseline Edition 2TR 24772

CERT C guililees: EXP3& and DCL30
AdaQualityand Style Guide: 7.6.7, 7.6.8, and 10.7.6

6.35.3 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a deterministically predictable
variant, which theefore can be exploited, and an intermittent, naleterministic variant, which is next to
impossible to elicit during testingr'he following code sample illustrates the two variants; the behaviour is not
languagespecific:

struct s { e };

typedef struct s array_type[1000];
array_type* ptr;

array_type* F()

{

struct s Arr[1000];
ptr = &Arr; /I Risk of variant 1;
return &Arr; /I Risk of variant 2;
b
é

struct s secret;
array_type* ptr2;

ptr2 = F();
secret = (*ptr2)[10]; /[Fault of variant 2
é

secret = (*ptr)[10]; /[Fault of variant 1

The risk of variant 1 is the assignment of the addregsrofto a pointer variable that survives the lifetime of

Arr . The fault is the subsequent use of the dangling reference tsthek, which references memory since

altered by other calls and possibly validly owned by other routidespart of a calback, the fault allows

systematic examination of portions of the stack contents without triggering an dmayndschecking violaon.

Thus, this vulnerability is easily exploitabkss a fault, the effects can be most astounding, as memory gets
corrupted by completely unrelated code portion@A lifetime check as part of pointer assignment can prevent

the risk. In many casesyd asthe situations above, the check is statically decidable by a compiler. However, for
the general case, a dynamic check is needed to ensure that the copied pointer value lives no longer than the
designated object.)

¢CKS NRal 2F O 8WI Ny w KBa gAY RERAX 2Y N szNayoid idrkeXpensiRR NB a &
copy of a function result, as long as it is consumed before the next routine call o@twesdiom is based on the
ill-founded assumption that the stack will not be affectegdanything until this next call is issuetihe
FaadzYLJiA2y Aa FlLftaSy K2eSOSNE AT Fy AydSNNHzLIG 2 OOdzN
stealing > @ik Usigkhe current stack to satisfy its memory requiremeritsus, the valuef Arr can be

overwritten before it can be retrieved after the call &n As this fault will only occur if the interrupt arrives after

the call has returned but before the returned result is consumed, the fault is highly intermittent and next to
impossibé to recreate during testing.Thus, it is unlikely to be exploitable, but also exceedingly hard to find by
testing. It can begin to occur after a completely unrelated interrupt handler has been coded or al@ngd.

static analysis can relatively egsiletect the danger (unless the code combines it with risks of variarfBdme

80 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

compilers issue warnings for this situation; such warnings need to be headddome forms of static analysis
are effective in identifying such problems.

6.35.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 The address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable
or can be retured by this routine as a result.

1 No check is made that the lifetime of the variable receiving the address is no larger than the lifetime of
the designated entity.

6.35.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid tkalnerability or mitigate its ill effects in the following ways:

1 Do not use the address of locally declared entities as storable, assignable or returnable value (except
where idioms of the language make it unavoidable).

1 Where unavoidable, ensure that thiéetime of the variable containing the address is completely enclosed
by the lifetime of the designated object.

1 Never return the address of a local variable as the result of a function call.

6.35.6 Implications for standardization

In future standardizatin activities the following items should be considered:

1 Do not provide means to obtain the address of a locally declared entity as a storable value; or

1 Define implicit checks to implement the assurance of enclosed lifetime expressab-atause5 of this
vulnerability. Note that, in many cases, the check is statically decidable, for example, when the address of
a local entity is taken as part of a return statement or expression.

6.36 Subprogram Signature Mismatch [OTR]

6.36.1 Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or with parameters of different
types thanit expects, then the results will be incorreddepending on the language, the operating environment,
and the implementation, the error might be as benign as a diagnostic message or as extreme as a program
continuing to execute with a corrupted stackhe possibility of a corrupted stack provides opportunities for
penetration.

6.36.2 Cross reference

CWE:
628. Function Call with Incorrectly Specified Arguments
686. Function Call with Incorrect Argument Type
683. Function Call with Incorrect Order of Argents

© ISTIEC2012¢ All rights reserved 81

WG 23/N 027 Baseline Edition 2TR 24772

JSF AV Rule: 108

MISRA C 2004: 8.1, 8.2, 8.3, 16.1, 16.3, 16.4, 4608,6.6

MISRA C++ 2008:3-2, 32-1, 32-2, 32-3, 32-4, 3-3-1, 39-1, 83-1, 84-1, and 84-2
CERT C guililees: DCL3TC, and DCL36

6.36.3 Mechanism of failure

When a subpogram is called, the actual arguments of the call are pushed on to the execution ¥then the
subprogram terminates, the formal parameters are popped off the stéicthe number and type of the actual
arguments do not match the number and type oétformal parameters, thedepending upon the calling
mechanism used by the language translatbg push and the pop will not beonsistentand, if so,the stack will
be corrupted. Stack corruption can lead to unpredictable execution of the program angavide opportunities
for execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected return match the declared set of formal parameterseturn value (the
subprogram signaturein both number and type(ln some cases, programmers should observe a set of
conventions to ensure that this is truetjowever, when the call is being made to an externally compiled
subprogram, an objeetodelibrary, or a module compiled in a different language, the programmer must take
additional steps to ensure a match between the expectations of the caller and the called subprogram.

6.36.4 Applicable language characteristics

This vulnerability descriptiois intended to be applicable to languages with the following characteristics:

il

Languages that do noequire their implementations to ensurdat the number and types of actual
arguments are equal to the number and types of the formal parameters.

Implementaions that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libratiasy
subprograms compiled in other languages.

6.36.5 Avoiding the vu Inerability or mitigating its effects

Software developers can avoid the ratability or mitigate its ileffects in the following ways:

il

il
f

Take advantage of any mechanism provided by the language to ensursuthiatogramsignatures
match.

Avoid any languagkeatures that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call.

Take advantage of any language or implementation feature that would guarantee matching the
subprogram signature in linkg to other languages or to separately compiled modules.

Intensively review subprogram calls where the match is not guaranteed by tooling

Ensure that only a trusted source is used when usingstandard imported modules.

6.36.6 Implications for standard ization

In future standardizatiomctivities the following items should be considered:

82

© ISQIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Language specifiers could ensure that the signatures of subprograms match within a single compilation
unit and could provide features for asserting and checking thechmafith externally compiled
subprograms.

6.37 Recursion [GDL]

6.37.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining thevalusome functionsilt is tempting to
write code that mirrors the mathematicdlowever, the use of recursion in a computer can have a profound
effect on the consumption of finite resources, leading to denial of service.

6.37.2 Cross reference

CWE:

674. Uncontrolled Recursion
JSF AV Rule: 119
MISRA C 2004: 16.2
MISRA C++ 2008:574
CERT C guililees: MEMOSC
AdaQualityand Style Guide: 5.6.6

6.37.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functiblmsvever, economical

definition and economical calculation are two different subjedtds tempting to calculate the value of a

recursive function using recursive subprograms because the expression in the programming language is
straightforward and easto understand.However, the impact on finite computing resources can be profound.
Each invocation of a recursive subprogram may result in the creation of a new stack frame, complete with local
variables.If stack space is limited and the calculatiorsoie values will lead to an exhaustion of resources
resulting in the program terminating.

In calculating the values of mathematical functions the use of recursion in a program is usually obvious, but this i
not true when considering computer operationsrggrally, especially when processing error conditioRer

example, finalization of a computing context after treating an error condition might result in recussiohn s
attempting torecover resourceby closing a file after an error was encounteredlimsing the same file).

Although such situations may have other problems, they typically do not result in exhaustion of resources but
may otherwise result in a denial of service.

6.37.4 Applicable language characteristics
This vulnerability descriptiois intended to be applicable to languages with the following characteristics:

1 Any language that permits the recursive invocation of subprograms.

© ISTIEC2012¢ All rights reserved 83

WG 23/N 027 Baseline Edition 2TR 24772

6.37.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerabilitynatigate its ill effects in the following ways:

9 Minimize the use of recursion.

9 Converting recursive calculations to the corresponding iterative calculatioprinciple, any recursive
calculation can be remodeled as an iterative calculation which aWiéla smaller impact on some
computing resources but which may be harder for a human to compreh&hd.cost to human
understanding must be weighed against the practical limits of computing resource.

1 In cases where the depth of recursion can be shownetatatically bounded by a tolerable number, then
recursion may be acceptable, but should be documented for the use of maintainers.

It should be noted that some languages or implementations provide special (more economical) treatment of a
form of recursiorknown adail-recursion In this case, the impact on computing economy is redud&ftien
using such a language, tail recursion may be preferred to an iterative calculation.

6.37.6 Implications for standardization
[None]

6.38 Ignor ed Error Status and Unhandled Exceptions [OYB]

6.38.1 Description of application vulnerability

Unpredictedfaults and exceptional situations arise during the execution of code, preventing the intended
functioning of the codeThey are detected and reported by the language implementation or by explicit code
written by the user. Different strategies and langaampnstructs are used to report such errors and to take
remedial action.Serious vulnerabilities arise when detected errors are reported but ignored or not properly
handled.

6.38.2 Cross reference

CWE:
754. Improper Check for Unusual or Exceptional Gtois
JSF AV Rules: 115 and 208
MISRA C 20046.10
MISRA C++ 2008:-B=2 and 193-1
CERT C guililees: DCLOZ, ERROGC, and ERRE2

6.38.3 Mechanism of failure

The fundamental mechanism of failure is that the program does not react to a detectetoemeacts
inappropriately to it. Execution may continue outside the envelope provided by its specification, making
additional errors or serious malfunction of the software likely. Alternatively, execution may terminate. The
mechanism can be easily esjibd to perform denialbof-service attacks.

84 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

The specific mechanism of failure depends on the error reporting and handling scheme provided by a language ¢
applied idiomatically by its users.

In languages that expect routines to report errors via statusabées, return codes, or threadcal error

indicators, the error indications need to be checked after each éalithese frequent checks cost execution time
and clutter the code immensely to deal with situations that may occur rarely, programmerslactardg to apply
the scheme systematically and consistenfRailure to check for and handé arisingerror condition continues
execution as if the error never occurreth most cases, this continued execution in adéfined program state
will soone or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these prdiiiegimindle

the exceptional code in exception handlers, they need not cost execution time if no error is pregktiteg will

not allow the program to continue execution by default when an error occurs, since upon raising the exception,
control of execution is automatically transferred to a handler for the exception found on the call Staekisk

and the failuremechanism is that there is no such handler (unless the language enforces restrictions that
guarantees its existence), resulting in the termination of the current thread of conMieb, a handler that is

found might not be geared to handle the multitudé error situations that are vectored to it. Exception handling
is therefore in practice more congt for the programmer than, for examplde use of status pameters.
Furthermore, differenfanguages provide exceptidmandling mechanisms that differ @etails of their design,

which in turn may lead to misunderstandings by the programmer.

The cause for the failure might be simply laziness or ignorance on the part of the programmer, or, more
commonly, a mismatch in the expectations of where fault detecnd fault recovery is to be don@articularly
when components meet that employ different fault detection and reporting strategies, the opportunity for
mishandling recognized errors increases and creates vulnerabilities.

Another cause of the failure the scant attention that many library providers pay to describe all error situations
that calls on their routines might encounter and report. In this case, the caller cannot possibly react sensibly to all
error situations that might ariseAs yet anothercause, the error information provided when the error occurs may

be insufficiently complete to allow recovery from the error.

6.38.4 Applicable language characteristics

Whether supported by the language or not, error reporting and handling is idiomgtimasent in all languages.
Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.38.5 Avoiding the vulnerability or mitigating its effects

Given the variety of error handling mechanisms, it is difficult to pegeneral guidelinesHowever, dealing with
exception handling in some languages can stress the capabilities of static analysis tools and can, in some cases,
reduce the effectiveness of their analysis. Inversely, the use of error status variablescctmdeafusingly
complicated control structures, particularly when recovery is not possible locHtlgrefore, for situations where

the highest of reliability is required, the decision for or against exception handling deserves careful thought. In
any cae, exceptiorhandling mechanisms should be reserved for truly unexpected situations and other situations
where no local recovery is possibiBituations which are merely unusual, like the end of file condition, should be
treated by explicit testing either prior to the call which might raise the error or immediately afterwahal.

© ISTIEC2012¢ All rights reserved 85

WG 23/N 027 Baseline Edition 2TR 24772

general, error detection, reporting, correction, and recovery should not be a late opportunisticradulit should
be an integral part of a system design.

Software developers caavoid the vulnerability or mitigate its ill effects in the following ways:

1 Checking error return values or auxiliary status variables following a call to a subprogram is mandatory
unless it can be demonstrated that the error condition is impossible.

1 Eaqually, exceptions need to be handled by the exception handlers of an enclosing construct as close as
possible to the origin of the exception but as far out as necessary to be able to deal with the error.

9 For each routine, all error conditions need to d@cumentedand matching error detection and reporting
needs to be implemented, providing sufficient information for handling the error situation.

1 When execution within a particular context is abandoned due to an exception or error condition, it is
important to finalize the context by closing open files, releasing resources and restoring any invariants
associated with the context.

1 Itis often not appropriate to repair an error situation and retry the operation. It is usually a better
solution to finalize anderminate the current context and retreat to a context where the fault can be
handled completely.

9 Error checking provided by the language, the software system, or the hardware should never be disabled
in the absence of a conclusive analysis that the recomdition is rendered impossible.

1 Because of the complexity of error handling, careful review of all error handling mechanisms is
appropriate.

1 In applications with the highest requirements for reliability, defeirsdepth approaches are often
approprite, for example, checking and handling errors even if thought to be impossible.

6.38.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 A standardized set of mechanisms for detecting arating error conditions should be developed so that
all languages to the extent possible could use thdrhis does not mean that all languages should use the
same mechanisms as there should be a variety each of the mechanisms should be standardized.

6.39 Termination Strategy [REU]

6.39.1 Description of application vulnerability

Expectations that a system will be dependable are based on the confideaicthéhsystem will operate as

expected and not fail in normal use. The dependability of a syatatrits fault tolerancean be measured

through the component pals reliability, availability, safety and securitiReliability ishe ability of a systemio
component to perform its required functions under stated conditions for a specified period of lfi&& 1990
glossary]. Availability is how timely and reliable the system is to its intended users. Both of these factors matter
highly in systems usedifgafety and security. In spite of the best intentions, systems may encounter a failure,
either from internally poorly written software or external forces such as power outages/variations, floods, or
other natural disasters. The reaction to a fault cffiec the performance of a system and in particular, the

safety and security of the system and its users.

86 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

When the software does not terminate in the plannednner, safety or security is compromised, as failing in an
unspecified way interferes i the alternative recovery featuredn safetyrelated systems the results can be
catastrophic: for other systems the result can mean failure of the complete system

For termination issues associated with multiple threads, multiple processors or intealgosee8.4

Concurrency Directed terminatiodfCGThnd 8.6 Concurrency Premature TerminatiofCGS] Situations that
cause an application to terminate unexpectedly or that cause an application to not terminate because of other
vulnerabilities are covered in those vulnerabilities.

6.39.2 Cross reference

JSF AV Rule: 24

MISRA C@4: 20.11

MISRA C++ 2008:32, 155-2, 155-3, and 180-3
CERT C guiliiees: ERROZ, ERROG and ENV3EZ
AdaQualityand Style Guide: 5.8 and 7.5

6.39.3 Mechanism of failure

The reactiorto a fault in a system can depend on the criticality of the paxvhich the fault originatesWhen a
program consists of several tasks, each task may be critical, or not. If a task is critical, it may or may not be
restartable by the rest of the program. Ideally, a task that detects a fault within itself shoalold¢o halt

leaving its resources available for use by the rest of the program, halt clearing away its resources, or halt the
entire program.The latency of task termination and whether tasks can ignore termination signals should be
clearly specifiedHaving inconsistent reactions to a fault can potentially be a vulnerability.

When a fault is detected, there are many ways in which a system can fEaetquickest and most noticeable

way is to fail hard, also known as fail fast or fail stop. The reatdiardetected fault is to immediately halt the
system. Alternatively, the reaction to a detected fault could be to fail soft. The system would keep working with
the faults present, but the performance of the system would be degraded. Systems ushkigimaaailability
environment such as telephone switching centerspenmerce or other "always available" applicatiomgould

likely use a fail soft approach. What is actually done in a fail soft approach can vary depending on whether the
system is usedof safety-critical or security critical purposes. For{galfe systems, such as flight controllers,

traffic signals, or medical monitoring systems, there would be no effort to meet normal operational requirements,
but rather to limit the damage adanger caused by the fault. A system that fails securely, such as cryptologic
systems, would maintain maximum security when a fault is detected, possibly through a denial of service.

For termination issues associated with multipleglads, multiple processors or interrupatsosee8.4

Concurrency Directed terminatiodfCGThnd 8.6 Concurrency Premature TerminatiofCGS]Situations that

cause an application to terminate unexpectedly or that cause an application to not terminate because of other
vulnerabilities are covered in those vulnerabilities.

6.39.4 Applic able language characteristics

This vulnerability description is intended to be applicable to all languages.

© ISTIEC2012¢ All rights reserved 87

WG 23/N 027 Baseline Edition 2TR 24772

6.39.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in th@afimly ways:

1 A strategy for fault handling should be decided. Consistency in fault handling should be the same with
respect to critically similar parts.
1 A multitiered approach of fault prevention, fault detiéon and fault reaction should be used.
1 Systemdefined components that assist in uniformity of fault handling should be wdesh available For
one exampledesigning druntime constraint handler{as describedh Annex K of 9899:2012 Mjermits
the application to intercpt various erroneous situatiorend perform one consistent response, such as
flushing a previous transaction amnetstarting at the next one.
1 When there are multiple tasks, a fatiiindling policy should be specified whereby a task may
0 Halt, and keep itsesources available for other tasks (perhaps permitting restarting of the faulting
task)
0 Halt and remove its resources (perhaps to allow other tasks to use the resources so freed, or to
allow a recreation of the task)
0 Halt, and signal the rest of the pgram to likewise halt.

6.39.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

9 Languages should consider providing a means to perform fault handlgrgninology and the means
should be coddinated with other languages.

6.40 Type-breaking Reinterpretation of Data [AMV]

6.40.1 Description of application vulne rability

In most cases, objects in programs are assigned locations in processor storage to hold theiif Hadusame
storage space is assigned to more than one obj&dther statically or temporarily then a change in the value of
one object will haven effect on the value of the otheilFurthermore, if the representation of the value of an
object is reinterpreted as being the representation of the value of an object with a different type, unexpected
results may occur

6.40.2 Cross reference

JSF AV Res 153 and183

MISRA 2004: 18.2, 18.3, ah8.4

MISRA C++ 2008541 to 45-3, 410-1, 410-2, and 50-3 to 50-9
CERT C guililees: MEMOSC

AdaQualityand Style Guide: 7.6.7 and 7.6.8

88 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.40.3 Mechanism of failure

Sometimes there is a legitimate need fgplications to place different interpretations upon the same stored
representation of data.The most fundamental example is a program loader that treats a binary image of a
program as data by loading it, and then treats it as a program by invokiMpgt programming languages permit
type-breaking reinterpretation of data, however, some offer lessor-prone alternatives for commonly
encountered situations.

Typebreaking reinterpretation of representation presents obstacles to human understgrafithe code, the
ability of tools to perform effective static analysis, and the ability of code optimizers to do their job

Examples include:

1 Providing alternative mappings of objects into blocks of storage performed either statialy 4s
Fortrancommon) or dynamicallyquch agointers).

1 Union types, particularly unions that do not have a discriminant stored as part of the data structure.

1 Operations that permit a stored value to be interpreted as a different tygpelf asreating the
representation of a pointer as an integer).

In all of these cases accessing the value of an object may produce an unanticipated result.

A related problem, the aliasing of parameters, occurs in languages that permit call by reference because
supposedly ditinct parameters might refer to the same storage area, or a parameter and-fonahobject might
refer to the same storage area. That vulnerability is describ&hasing Parameters and Return Val@&S]]

6.40.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 A programming language that permits multiple interpretations of the same bit pattern.
6.40.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Programmers should avoid reinterpretation performed as a matter of convenience; for example, using an
integer pointer to manipulate character string dateositd be avoided When typebreaking
reinterpretation is necessary, it should be carefully documented in the code. However this vulnerability
cannot becompletely avoided because some applications view stored data in alternative ways.

1 When using union tygs it is preferable to use discriminated unioridis is dype of a union where a
stored value indicates which interpretation is to be placed upon the d8tame languagesiich as
variant records in Ada) enforce the view of data indicated by the vafltlee discriminant.If the
language does not enforce the interpretatidio example equivalence in Fortraand union in Gnd
C+9, then the code should implement an explicit discriminant and check its value ksfoessing the
data in the union, or use some other mechanism to ensure that correct interpretation is placed upon the
data value.

© ISTIEC2012¢ All rights reserved 89

WG 23/N 027 Baseline Edition 2TR 24772

1 Operations that reinterpret the same stored value as representing a different type should be avoided. It
is easier to avoiguch operations when the language clearly identifies thé&wor example, the name of
Adds Unchecked_Conversion function explicitly warns of the problemA much more difficult
situation occurs when pointers areesto achieve type reinterpretationSome languages perform type
checking of pointers and place restrictions on the ability of pointers to access arbitrary locations in
storage. Others permit the free use of pointersn such cases, code must be carlyfuéviewed in a
search for unintended reinterpretation of stored valuekherefore it is important to explicitly comment
the source code whermtendedreinterpretations occur.

i Static analysis tools may be helpful in locating situations where uninteraetérpretation occurs.On
the other hand, the presence of reinterpretation greatly complicates static analysis for other problems, so
it may be appropriate to segregate intended reinterpretation operations into distinct subprograms.

6.40.6 Implications for standardization
In future standardizatiomctivities the following items should be considered:

1 Because the ability to perform reinterpretation is sometimes necessary, but the need for it is rare,
programming language designers might consider puttiagtion labels on operations that permit
reinterpretation. For example, the operation in Ada that permits unconstrained reinterpretation is called
Unchecked_Conversion

1 Because of the difficulties with undiscriminated unions, programming language desigigtt consider
offering union types that include distinct discriminants with appropriate enforcement of access to objects.

6.41 Memory Leak [XYL]

6.41.1 Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available mé&mogmory leak can be
exploitedby attackergo generate deniabf-serviceby causing the program to execute repeatedly a sequence

that triggers the leak Moreover, a memory leak can cause any loagning critical program to shutdown
prematurely.

6.41.2 Cross reference

CWE:
401. FailuretoRele&s a SY2NE . ST2NB wSY2@Ay3a [ad wSTFSNByOS
JSF AV Rule: 206
MISRA C 2004: 20.4
CERT C guililees: MEM0OEC and MEM3LC
AdaQualityand Style Guide: 5.4.5, 5.9.2, and 7.3.3

6.41.3 Mechanism of failure
As a process or system runs, any memntaken from dynamic memory and not returned or reclaimed (by the

runtime system or a garbage collector) after it ceases to be used, may result in future memory allocation requests

90 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

failing for lack of free spac<ernatively, memory claimed and returnedn cause the heap to fragment, which
will eventually result in an inability tallocatethe necessary size storaggither condition will result in a memory
exhaustion exception, and program termination or a system crash.

If an attacker can determinthe cause of an existing memory leak, the attacker may be able to cause the
application to leak quickly and therefore cause the application to crash

6.41.4 Applicable language characteristics

This vulnerability description is intended to be applicabléanguages with the following characteristics:

1

Languages that support mechanisms to dynamically allocate memory and reclaim memory under progran
control.

6.41.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulability or mitigate its ill effects in the following ways:

|l

Use ofgarbagecollectors that reclaim memory that will never be used by the application again. Some
garbage collectors are part of the language while others arecacd

In systems with garbagmllectors, set all notocal pointers or references to null, when the designated

data is no longer needed, since the data will not be garbaajlected otherwise. In systems without

garbage collectors, cause deallocation of the data before the lastgroimtreference to the data is lost.
Allocating and freeing memory in different modules and levels of abstraction may make it difficult for
developers to match requests to free storage with the appropriate storage allocation reqUieist may

cause confusn regarding when and if a block of memory has been allocated or freed, leading to memory
leaks. To avoid these situations, it is recommended that memory be allocated and freed at the same level
of abstraction, and ideally in the same code module.

Storagepools are a specialized memory mechanism where all of the memory associated with a class of
objects is allocated from a specific bounded regidvhen used with strong typing one can ensure a

strong relationship between pointers and the space accesseul that storage exhaustion in one pool

does not affect the code operating on other memory.

Memory leaks can be eliminated by avoiding the use of dynamically allocated storage entirely, or by doinc
initial allocation exclusively and never allocating oncertfan execution commences. For safetitical
systems and long running systems, the use of dynamic memory is almost always prohibited, or restricted
to the initialization phase of execution.

Use static analysisvhich can sometimes deteathenallocatedstorage is no longer used and has not

been freed.

6.41.6 Implications for standardization

In future standardizatiomctivities the following items should be considered:

il

Languages can provide syntax and semantics to guarantee pragidarthat dynamic mermry is not
used (such as the configuratipmagmas feature offered by some programming languages

© ISTIEC2012¢ All rights reserved 91

WG 23/N 027 Baseline Edition 2TR 24772

1 Languages can document or specify that implementations must document choices for dynamic memory
management algorithms, to hope designers diecbn appropriate usage patterns and recovery
techniques as necessary

6.42 Templates and Generics [SYM|

6.42.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized by type
and then instantiated for specifictypes. ING+¥ R NBf I G SR f I y3dzZ 3Sasx GKBalSy R NS
AdaandJava G ISWRNN@R AR KIFGAy3d (2 1SSLI gNARGAYT WIESYLX | G
referred to collectively as generics.

Used well, generics can make code clearer, more predictiidecasier to maintainUsed badly, they can have
the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.

6.42.2 Cross reference

JSF AV Rules: 101, 102, 103, 104, and 105
MISRA C++ 20084-6-1, 146-2, 147-1 to 147-3, 148-1, and 148-2
Ada Quality and Style Guide: 8.3.1 through 8.3.8, and 8.4.2

6.42.3 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type
independent manner. Thisimplifies development and maintenance of the colteshould also assist in the
understanding of the code during review and maintenance, by providing the same behaviour for all types with
which it is instantiated.

Problems arise when the use of a genexctually makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

In most cases, the generic definition will have to make assumptions about the types it can legally be instantiated
with. For example, aort function requires that the elements to be sorted can be copied and compared. If these
assumptions are not met, the result is likely to be a compiler erf@r example if the sort function is instantiated
gAGK I dza SNJ RS TA Y S RlatibBaldferaipk?l KiS N2 SWBYWARIdzaKS WS2 # | ISy St
error, this can be regarded as a development issue, and not a software vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparealily, but
R2SayQil NIBa&dz (Fdrgxantple, @ gevidri dass Nafireda\sBt Nffmembers, a subset of which rely

on a particular property of the instantiation type (such as a generic container class with a sort member function,
only the sort finction relies on the instantiating type having a defined relational operatorsome languages,
suchasC& AF GKS 3ISYSNAO A& AyaildlyaAlriSR gAGK | (LIS Gl
never subsequently makes use betsubset of members that rely on the property of the instantiating type, the

code will compile and execute (for example, the generic container is instantiated with a user defined class that
R2Say Qi RSTFAYS | NBfl A2yl fthe3dtISenibeér af s instaddation)éhén LINE 3 N.

92 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

GKS O2RS Aa&a NBOASHPSR (KS IASYSNRO Oflaa oAttt | LIISIN
exist.

The problem as described in the two prior paragraphs can be reduced by a language (eattiras theoncepts
language feature being designed by the C++ committee).

Similar confusion can arise if the language permits specific elements of a generic to be explicitly defined, rather
than using the common code, so that behaviour is not considterdll instantiations.For example, for the same
generic container class, the sort member normally sorts the elements of the container into ascending order. In
fly3adza 35a adzOK Fa /bbb | WaLISOAIlT Ol a#ha paiicuar typ& ONB
C2NJ SEIFYLIX S GKS a2NI YSYOSNI F2NJ I Wt 21 G4Q O2yil Ay
sorting the elements into descending ordgr.LISOA I f AT I GA2y GKFIG R2SayQid | FF8
instantiation is not an issueAgain, for C++, there are some irregularities in the semantics of arrays and pointers
that can lead to the generic having different behaviour for different, but apparently very similar, thpsach

cases, specialization can bged to enforce consistent behaviour.

6.42.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

9 Languages that permit definitions of objects or functions to be parametetbigdgipe, for later
instantiation with specific types, such as:
0 Templatesn C++
0 Generics in Ada, Java.

6.42.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effecthe following ways:

1 Document the properties of an instantiating type necessary for a generic to be valid.

1 If an instantiating type has the required properties, the whole of the generic should be ensured to be
valid, whether actually used in the progneor not.

T t NEFSNIofé& | g2ART odzi G €SlFad OF NSFdzZ & R2O0dzY¢
I aLISOAFAO GeL)lS R2SayQi oSKIFI@S +ta A0 R2Sa FT2NJ sz

6.42.6 Implications for standardization

In future standardization activitiethe following items should be considered:

9 Language specifiers should standardize on a common, uniform terminology to describe
generics/templates so that programmers experienced in one language can reliably learn and refer to the
type system of another lanmge that has the same concept, but with a different name.

1 Language specifiers should design generics in such a way that any attempt to instantiate a generic with
constructs that do not provide the required capabilities results in a contipile error.

9 Language specifiers should provide an assertion mechanism for checking propertiestemeufor those
properties that canot be checked at compile timdt should be possible to inhibit assertion checking if
efficiency is a concern.

© ISTIEC2012¢ All rights reserved 93

WG 23/N 027 Baseline Edition 2TR 24772

6.43 Inheritance [RIP]

6.43.1 Description of application vulnerability

Inheritance the ability to create enhanced and/or restricted object classes based on existing obgsetsctan
introduce a number of vulnerabilities, both inadvertent and malicious. Because Inheritance allows the overriding
of methods of the parent class and because object oriented systems are designed to separate and encapsulate
code and data, it can hdifficult to determine where in the hierarchy an invoked method is actually defined. Also,
since an overriding method does not need to call the method in the parent class that has been overridden,
essential initialization and manipulation of class datayrha bypassed. This can be especially dangerous during
constructor and destructor methods.

Languages that allow multiple inheritance add additional complexities to the resolution of method invocations.
Different object brokerage systems may resolve thetmod identity to different classes, based on how the
inheritance tree is traversed.

6.43.2 Cross reference

JSF AV Rules: 86 to 97
MISRA C++ 2008:1012, 83-1, 101-1 to 101-3, and 163-1 to 103-3
AdaQualityand Style Guide: 9 (complete clause)

6.43.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety in
several ways:

1 Execution of malicious redefinitions, this can occur through the insertion of a class into the ctasshlyie
that overrides commonly called methods in the parent classes.

1 Accidental redefinition, where a method is defined that inadvertently overrides a method that has already
been defined in a parent class.

9 Accidental failure of redefinition, when a methdglincorrectly named or the parameters are not defined
properly, and thus does not override a method in a parent class.

1 Breaking of class invariants, this can be caused by redefining methods that initialize or validate class data
without including that itialization or validation in the overriding methods.

These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in the use
of multiple inheritance.

6.43.4 Applicable language characteristics
This vulnerabily description is intended to be applicable to languages with the following characteristics:

1 Languages that allow single and multiple inheritances.

94 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.43.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerapibir mitigate its ill effects in the following ways:

1 Avoid the use of multiple inheritance whenever possible.

1 Provide complete documentation of all encapsulated data, and how each method affects that data for
each object in the hierarchy.

91 Inherit only fromtrusted sources, and, whenever possible, check the version of the parent classes during
compilation and/or initialization.

1 Provide a method that provides versioning information for each class.

6.43.6 Implications for standardization

In future standardizon activities, the following items should be considered:

1 Language specification should include the definition of a common versioning method.
9 Compilers should provide an option to report the class in which a resolved method resides.
1 Runtime environmentst®ould provide a trace of all runtime method resolutions.

6.44 Extra Intrinsics [LRM]

6.44.1 Description of application vulnerability

Most languages define intrinsprocedures, which are easily available, or always "simply available", to any
translation unit. If a translator extends the set of intrinsics beyond those defined by the standard, and the
standard specifies that intrinsics are selected before proceduréiseaame signature defined by the application,
a different procedure may be unexpectedly used when switching between translators.

6.44 .2 Cross reference
[None]
6.44.3 Mechanism of failure

Most standard programming languages define a set of intringicgglures which may be used in any application.
Some language standards allow a translator to extend this set of intrinsic proced@oe® language standards
specify that intrinsic procedures are selected ahead of an application procedure of the saatergigThis may
cause a different procedure to be used whamitching between translators.

For example, most languages provide a routine to calculate the square root of a number, usuallysaatf)ed .
If a translator also provided, as an extension, bectoot routine, say namedbrt() , that extension may
override an application defined procedure of the same signature. If the two diffetenf) routines chose
different branch cuts when applied to complex arguments, the application could unpredictablyogg.

If the language standard specifies that application defined procedures are selected ahead of intrinsic procedures
of the same signature, the use of the wrong pedare may mask a linking error.

© ISTIEC2012¢ All rights reserved 95

WG 23/N 027 Baseline Edition 2TR 24772

6.44.4 Applicable language characteristics
This vulerability description is intended to be applicable to languages with the following characteristics:

1 Any language where translators may extend the set of intrinsic procedures and where intrinsic
procedures are selected ahead of application defined (or exdibrary defined) procedures of the same
signature.

6.44.5 Avoiding the vulnerability or mitigating its effec ts
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use whatever language features are avaiato mark a procedure as language defined or application
defined.

1 Be aware of the documentation for every translator in use and avoid using procedure signatures matching
those defined by the translatas extending the standard set.

6.44.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Qearly state whether translatorsanextend the set of intrinsic procedures or not

1 Qearly state what the precedence is for resolving collisions

1 Qearlyprovide ways to mark a procedure signature as being the intrinsic or an application provided
procedure

1 Require that a diagnostic is issued when an application procedure matches tragwsigiof an intrinsic
procedure.

6.45 Argument Passing to Library Fun ctions [TRJ]

6.45.1 Description of application vulnerability

Libraries that supply objects or functions are in most cast¢sequired to check the validity of parameters
passed to them. In those cases where parameter validation is required there might not be adequate parameter
validation.

6.45.2 Cross reference

CWE:
114. Process Control
JSF AV Rules 16, 18, 19, 20, 2122224, and 25
MISRA C 20020.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11, and 20.12

MISRA C++ 2008:-071, 170-5, 180-2, 180-3, 180-4, 182-1, 187-1 and 270-1
CERT C guiliiges: INTOZC and STReECZ

96 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.45.3 Mechanism of failure

When callng a library, either the calling function or the library may make assumptions about paramEeters.
example, it may be assumed by a library that a parameter iszeoo so division by that parameter is performed
without checking the valueSometimes somealidation is performed by the calling function, but the library may
use the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to anidnpatameter is usually undefined and can
cause unanticipated results.

6.45.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

1 Languagegroviding or usingjbraries that do not validate the parameters accepted by functions,
methods and objects.

6.45.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Librariesshould be defined to validate any values passed to the library before the value is used.

1 Develop wrappers around library functions that check the parameters before calling the function.

1 Demonstrate statically that the parameters are never invalid.

1 Use ony libraries known to have been developed with consistent and validated interface requirements.

It is noted that several approachean be taken, some work best if used in conjunction with each other.
6.45.6 Implications for standardization
In future standrdizationactivities the following items should be considered:

1 Ensure thatll library functiors defined operatas intended over the specifiednge of input values and
reactin a defined manner to values that are outside the specified range.

1 Languageshould define libraries that provide the capability to validate parameters during compilation,
during execution or by static analysis.

6.46 Inter -language Calling [DJS

6.46.1 Description of application vulnerability

When an application is developed using more than one programming language, complications arise. The calling
conventions, data layout, error handing and return conventions all differ betwaguiages; if these are not
addressed correctly, stack overflow/underflow, data corruption, and memory corruption are possible.

In multi-language development environments it is also difficult to reuse data structures and object code across
the languages.

© ISTIEC2012¢ All rights reserved 97

WG 23/N 027 Baseline Edition 2TR 24772

6.46.2 Cross reference
[Nondg
6.46.3 Mechanism of failure

When calling a function that has been developed using a language different from the calling language, the call
convention and the return convention used must be taken into account. If these caomerare not handled
correctly, there is a good chance the calling stack will be corrupted;.86&ubprograntignature Mismatch

[OTR. The call convention covensw the language invokdhe call;see6.34 Passing Parameters and Return
ValuedCSJ, and how the parameters are handled.

Many languages restrict the length of identifiers, the type of characters that can be used as the first character,
and the case of the characters used. All of these need to be taken into account whkimga routine written in

a language other than the calling language. Otherwise the identifiers might bind in a manner different than
intended.

Character and aggregate data types require special treatimeatmultilanguage development environment. The
data layout of all languages that are to be used must be taken into consideration; this includes padding and
alignment. If these data types are not handled correctly, the data could be corrupted, the memory could be
corrupted, or both may become corrupfhis can happen by writing/reading past either end of the data
structure, see5.9 Buffer Boundary Violation (Buffer OverfldiCB. For example, BascalSTRINGdata type

VAR str: STRING(10);
corresponds to a C structure
struct {
int length;

char str [10];
b

andnot to the C structure

char str [10]

wherelength contains the actual length @TRING. The second C construct is implented with a physical
length that is different from physical length of the Pasg&8RINGand assumes a null terminator.

Most numeric data typs have counterparts across languages, but again the layout should be understood, and
only those types that matcthe languages should be used. For example, in some implementations of C++ a

signed char

would match a Fortran
integer(1)

and would match a Pascal

98 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

PACKED- 128..127
These correspondences can be implementatileiined and should be verified.
6.46.4 Applicab le language characteristics

The vulnerability is applicable to languages with the following characteristics:

1 All high level programming languages and low level programming languages are susceptible to this
vulnerability when used in a muliainguage develament environment.

6.46.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use the intelanguage methods and syntax specified by the applicable lamgstagdard(s). For
example, Fortran and Ada specify how to call C funstion
1 Understand the calling conventions of all languages used.
1 Foritems comprising the intdanguage interface:
0 Understand the data layout of all data types used.
0 Understand the rairn conventions of all languages used.
o0 Ensure that the language in which error check occurs is the one that handles the error.
o Avoid assuming that the language makes a distinction between upper case and lower case letters
in identifiers.
Avoid using a spé character as the first character in identifiers.
0 Avoid using long identifier names.

o

6.46.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Standards committees should consider develoggtamdard provisions for intelanguage calling with
languages most often used with their programming language.

6.47 Dynamically -linked Code and Self-modifying Code [NYY]

6.47.1 Description of application vulnerability

Code that is dynamically linkeday be different from the code that was tested. This may be the result of
replacing a library with another of the same name or by altering an environment variable such as

LD _LIBRARY_PATHon UNIXplatforms so that a different directory is searched for the library file. Executing
code that is different than thatvhich wagested may lead to unanticipated errors or intentional malicious
activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Historically selnodifying code was needed for software that was requitedun on a platform with very limited
memory. Itis now primarily used (or misused) to hide functionality of software and make it more difficult to
reverse engineer or for specialty applications such as graphics where the algorithm is tuned at rurgivee to

© ISTIEC2012¢ All rights reserved 99

WG 23/N 027 Baseline Edition 2TR 24772

better performance. Selfhodifying code can be difficult to write correctly and even more difficult to test and
maintain correctly leading to unanticipated errors.

6.47.2 Cross reference
JSF AV Rule: 2
6.47.3 Mechanism of failure

Through the alteation of a library file or environment variable, the code that is dynamically linked may be
different from the code which was tested resulting in different functionality.

On some platforms, a pointéo-data can erroneously be given an address value tkatghates a location in the
instruction space. If subsequently a modification is made through that pointer, then an unanticipated behaviour
can result.

6.47.4 Applicable language characteristics
This vulnerability description is intended to be applicabléanguages with the following characteristics:

1 Languages that allow a point&r-data to be assigned an address value that designates a location in the
instruction space

1 Languages that allow execution@ide that exists inlata space

1 Languages that peit the use of dynamically linked or shared libraries

1 Languagethat executeon an OS that permits program memory to be both writable and executable.

6.47.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnetapior mitigate its ill effects in the following ways:

Verify that the dynamically linked or shared code being used is the same as that which was tested.
Do not write seHmodifying code except in extremely rare instances. Most software applicationsdshou
never have a requirement for satiodifying code.

1 Inthose extremely rare instances where its use is justified;nsetfifying code should be very limited and
heavily documented.

)l
il

6.47.6 Implications for standardization

In future standardizatiomctivities, the following items should be considered:

1 Languages should consider providing a means so that a program can either automatically or manually
check that the digital signaturef a library matches the one in the compile/test@mnment.

6.48 Library Signature [NSQ

6.48.1 Description of application vulnerability

Programs written in modern languages may use libraries written in otmgyuages than the program
implementation language. If the library is large, the effort of adding signatures for all of the functions use by

100 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

hand may be tedious and err@rone. Portable crosknguage signatures will require detailed understanding of
both languages, which a programmer may lack.

Integrating two or more programming languages into a single executable relies upon knowing how to interface
the function calls, argument list and global data structures so the symbols match in the object codglidiing.

Byte alignment can be a source of data corruption if memory boundaries between the programming languages
are different. Each language may also align structure data differently.

6.48.2 Cross reference

MISRA C 2004: 1.3
MISRA C++ 2008:012

6.48.3 Mechanism of failure

When the library and the application in which it is to be used are written in different languages, the specification
of signatures is complicated by intemguage issues.

As used in this vulnerability description, the term dibyr includes the interface to the operating system, which
may be specified only for the language used to code the operating system itself. In this case, any program writte
in any other language faces the inlanguage interoperability issue of creatiadully-functional signature.

When the application language and the library language are different, then the ability to specify signatures
according to either standard may not exist, or be very difficult. Thus, a trandlgtivanslator solution may be
needed, which maximizes the probability of incorrect signatures (since the solution must be recreated for each
translator pair). Incorrect signatures may or may not be caught during the linking phase.

6.48.4 Applicable language characteristics
This vulneability description is intended to be applicable to languages with the following characteristics:
1 Languages that do not specify how to describe signatures for subprograms written in other languages.
6.48.5 Avoiding the vulnerability or mitigating its eff ects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use tools to create the signatures.
1 Avoid using translator options or language features to reference library subprograms without proper
signatures.

6.48.6 Implications for standardization
In future standardization activities, the following items should be considered:

91 Provide correct linkage even in the absence of correctly specified procedure signatures. (Note that this
may be very difficult where theriginal source code is unavailable.)

© ISTIEC2012¢ All rights reserved 101

WG 23/N 027 Baseline Edition 2TR 24772

9 Provide specified means to describe the signatures of subprograms.

6.49 Unanticipated Exceptions from Library Routines [HJW]

6.49.1 Description of application vulnerability

A library in this context is taken to mean a set of software routines produced outside the control of the main
application developer, usually by airith party, and where the application developer may not have access to the
source. In such circumstances the application developer has limited knowledge of the library functions, other than
from their behavioural interface.

Whilst the use of libraries camgsent a number of vulnerabilities, the focus of this vulnerability is any undesirable
behaviour that a library routine may exhibit, in particular the generation of unexpected exceptions.

6.49.2 Cross reference

JSFAV Rule208

MISRA @004 3.6, 20.3

MISRA C+2008 153-1, 153-2, 1704
AdaQualityand Style Guide: 5.8 and 7.5

6.49.3 Mechanism of failure

In some languages, unhandled exceptions leaidmglementationdefinedbehaviour. This can include immediate
termination, without for example, relasing previously allocated resourcéfa library routineraisesan
unanticipated exception, this undesirable behaviour may result.

It should be noted that the considerations[@YB, IgnoredError Statusand Unhandled Exceptionare also
relevant hee.

6.49.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

f Languagesthadl y f Ay {1 LINBGA2dzate RS@OSt2LISR fAONIN& O2R:
access to the library source)
1 Languages that permit exceptions to be thrown but do not require handlers for them

6.49.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effectsa following ways:
T 1ttt fAONINEB OF ffa acksdtm SF OENdihdlgsiRadashfpotaSfchh WO I
construct), so that any unanticipated exceptions can be caught and handled appropriBitéywraping

may be done for each library function call or for the entire behaviour of the prog@mexample having
the exception handler in main for C+However, note thatthe laB NJ A ay Qd | O2 YLX S S 2

102 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

objects are constructeddfore main $ entered and are destroyed after it has been exité&bnsequently,

MISRA CHHf6] bars class constructors and destructors from throwing exceptions (unless handled locally).
1 An alternative approach would be to use only liraputines for which all possible exceptions are

specified.

6.49.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Languages that provide exceptions should provide a mechanism for cat¢hingsible exceptiongor
examplel W@ I AKX Klhe/bRHaBoddofdhe program when encountering an unhandled
exception should be fully defined.

9 Languages should provide a mechanism to determine which exceptions might be thrown by a called
library routine.

6.50 Pre-processor Directives [NMP]

6.50.1 Description of application vulnerability

Preprocessor replacements happen before any sowmde syntax check, therefore there is no type checking
this is especially important in functidike macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning. In
many cases if expliaitelimiters are not added around the macro text and around all macro arguments within the
macro text, unexpected expansion is the result.

Source code that relies heavily on complicated-precessor directives may result in obscure and hard to
maintain codesince the syntax they expect may be different from the expressions programmers regularly expect
in a given programming language.

6.50.2 Cross reference

Holzmannr8

JSFAV Rules: 26, 27, 28, 29, 30, 31, and 32

MISRA C 2004: 191).7, 19.8, and 19.9

MISRA C++ 2008: 16-3, 160-4, and 160-5

CERT C guidelines: PREQPREQGZ, PRE1C, and PRE3Q

6.50.3 Mechanism of failure

Readability and maintainability may be greatly decreased Hppoeessing directives are used instead of language
features.

While static analysis can identify many problems early; heavy use of thprpeessor can limit the effectiveness
of many static analysis tools, which typically work on thegmacessed source code.

In many cases where complicated macros are used, the prodoas notdo what is intended. For example:

© ISTIEC2012¢ All rights reserved 103

WG 23/N 027 Baseline Edition 2TR 24772

define a macro as follows,
#define CD(x, y) (x +y -1y

whose purpose is to divide. Then suppose it is used as follows
a=CD (b &c, sizeof (int));

which expands into
a = (b & c + sizeof (int) - 1)/ sizeof (int);

which most times will not do what is intended. Defining the macro as
#define CD(x, y) ((X) + (y) - D/

will provide the desired result.
6.50.4 Applicable language characteristics
This vulnerability description is intended e applicable to languages with the following characteristics:

Languages that have a lexitavel preprocessor.

Languages that allow unintended groupings of arithmetic statements.
Languages that allow cascading macros.

Languages that allow duplicatiom side effects.

Languages that allow macros that reference themselves.

Languages that allow nested macro calls.

1 Languages that allow complicated macros.

=A =2 =4 =4 =4 =4

6.50.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulneitap or mitigate its ill effects in the following ways:

1 Where it is possible to achieve the desired functionality without the use eppoeessor directives, this
should be done in preference to the use of ym@cessordirectives

6.50.6 Implications f or standardization
In future standardization activities, the following items should be considered:

9 Standardsshould reduce or eliminate dependence on lexdeakl preprocessors for essential
functionality (such as conditional compilation).

i Standards shdd consider providing capabilities to inline functions and procedure calls, to reduce the
need for preprocessor macros.

104 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

6.51 Suppression of Language-defined Run -time Checking [MXB]

6.51.1 Description of application vulnerability

Some languages include the provision for runtime checking to prevent vulnerabilities to @arenical
examples are bourslor length checks on array operations or talue checks upon dereferencing pointers or
references. In most cases, the reaction to a failed check is the raising of a larupiegel exception.

As runtime checking requires execution time and as sonmgaut guidelines exclude the use of exceptions,
languages may define a way to optionally suppress such checking for regions of the code or for the entire
program. Analogously, compiler options may be used to achieve this effect.

6.51.2 Cross reference
[None]
6.51.3 Mechanism of Failure

Vulnerabilities that could have been prevented by the-time checks are undetected, resulting in memory
corruption, propagation of incorrect values or unintended execution paths.

6.51.4 Applicable language characterist ics
This vulnerability description is intended to be applicable to languages with the following characteristics:

9 Languages that define runtime checks to prevent certain vulnerabilities and

1 Languages that allow the above checks to be suppressed,

1 Languagesrocompilers that suppress checking by default, or whose compilers or interpreters provide
options to omit the above checks

6.51.5 Avoiding the vulnerability

Software developers can avoid the vulnerability or mitigate ieffidlcts in the following ways:

1 Do not suppress checks at all or restrict the suppression of checks to regions of the code that have been

proved to be performanceritical.

If the default behaviour of the compiler or the language is to suppress checks, then enable them.
Where checks arsuppressed, verify that the suppressed checks could not have failed.

Clearly identify code sections where checks are suppressed.

Do not assume that checks in code verified to satisfy all checks could not fail nevertheless due to
hardware faults.

= =4 =4 =4

6.51.6 Implications for standardization

[None]

© ISTIEC2012¢ All rights reserved 10E

WG 23/N 027 Baseline Edition 2TR 24772

6.52 Provision of Inherently Unsafe Operations [SKL]

6.52.1 Description of application vulnerability

Languages define semantic rules to be obeyeddnformingprograms. Compilers enforce these rulesd
diagnoseviolating programs.

A canonical example are the rules of type checking, intended among other reasons to prevantisalty
incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real numbers to booleans, or
complex numbers to twalimensional coordinates.

Occasionally there arises a need to step outside the rules of the type modehivameeded functionély. One
suchsituation is the casting of memory as part of the implementation of a heap allocator to the type of object for
which the memory is allocatedA typesafe assignment is impossible for this functionalityus, a capality for

dzy OKSO1 SR aidél)S OlradAay3daé o0SGeSSYy INDAGNI NBE (éLlSa (2
inherently unsafe operation, without which the tygafe albcator cannot be programmed.

Another example is the provision of operat®known to be inherently unsafe, such as the deallocation of heap
memory without prevention of dangling references.

A third example is any interfacing with another language, since the checks ensurirgpfgpess rarely extel
across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by programmers in
situations where their use is neither necessary nor appropriate.

The vulnerability is eminently exploitaltie violate program security.
6.52.2 Cross reference

[None]
6.52.3 Mechanism of Failure

The use of inherently unsafe operations or the suppression of checkimgnventshe features that are
normally applied to ensure safe execution. Control flow, data values, and memory accesbesoampted as a
consequence. See the respective vulnerabilities resulting from such corruption.

6.52.4 Applicable lan guage characteristics
This vulnerability description is intended to be applicable to languageshétfollowing characteristics:
1 Larguages that allow compileéme checks for the prevention of vulnerabilities to be suppressed by

compiler or interpreter options or by language constructs, or
1 Languages that provide inherently unsafe operations

6.52.5 Avoiding the vulnerability

Software @velopers can avoid the vulnerability or mitigate iteffects in the following ways:

106 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Restrict the suppression of compiliene checks to where the suppression is functionally essential.

Use inherently unsafe operations only when they are functionageatial.

Clearly identify program code that suppresses checks or uses unsafe operations. This permits the focusir
of review effort to examine whether the function could be performed in a safer manner.

= =4 =

6.53 Obscure Language Features [BRS]

6.53.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand or difficult to use correctly.
The problem is compounded if a software design must be reviewed by people who may not be language experts,
such as, hardware engineers, humfactors engineers, or safety officer&ven if the design and code are initially
correct, maintainers of the stare may not fully understand the inteniThe consequences of the problem are

more severe if the software is to be used in trusted applications, such as safetgsioricritical ones.

Misunderstood language features or misunderstood code seqgegican lead to application vulnerabilities in
development or in maintenance.

6.53.2 Cross reference

JSF AV Rules: 84, 86, 88, and 97

MISRA C 2004: 3.2,10.2, 13.1, 12066-20.12, and 12.10
MISRA C++ 2008:201, 2-3-1, and 121-1

CERT C guililees:FIO03C, MSCOE, MSC3C, and MSC3C.
ISO/IEC TR 15942:2000: 5.4.2,5.6.2 and 5.9.3

6.53.3 Mechanism of failure

The use of obscure language features can lead to an application vulnerability in several ways:

1 The original programmer may misunderstand tterect usage of the feature and could utilize it
incorrectly in the design or code it incorrectly.

1 Reviewers of the design and code may misunderstand the intent or the usage and overlook problems.

1 Maintainers of the code cannot fully understand the inten the usage and could introduce problems
during maintenance.

6.53.4 Applicable language characteristics

This vulnerability description is intended to be applicable to any language.

6.53.5 Avoiding the vulnerability or mitigating its effects

Softwaredevelopers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Individual programmers should avoid the use of language features that are obscure or difficult to use,
especially in combination with other difficult language featur®rganizations should adopt coding
standards that discourage use of such features or show how to use them correctly.

© ISTIEC2012¢ All rights reserved 107

WG 23/N 027 Baseline Edition 2TR 24772

1 Organizations developing software with critically important requirements should adopt a mechanism to
monitor which language features acerrelated with failures during the development process and during
deployment.

i Organizations should adopt or develop stereotypical idioms for the use of difficult language features,
codify them in organizational standards, and enforce them via reviewegsss.

1 Avoid the use of complicated features of a language.

9 Avoid the use of rarely used constructs that could be difficult for elevgl maintenance personnel to
understand.

{1 Static analysis can be used to find incorrect usage of some language features.

It should be noted that consistency in coding is desirable for each of review and maintefdrerefore, the
desirability of the particular alternatives chosen for inclusion in a coding standard does not need to be empirically
proven.

6.53.6 Implication s for standardization
In future standardization activities, the following items should be considered:

1 Language designers should consider removing or deprecating obscure, difficult to understand, or difficult
to use features.
1 Language designers should prianguage directives that optionally disable obscure language features.

6.54 Unspecified Behaviour [BQF]

6.54.1 Description of application vulnerability

The external behaviour of a program whose source code contains one or more instances of constructs having
unspecified behaviour may not be fully predictable when the source code is (re)compiled or (re)linked.

6.54.2 Cross reference

JSF AV Rules:-25

MISRA C 2004:3,1.5,3.13.3,34,17.3,1.2,5.1, 18.2,19.2, and 19.14

MISRA C++ 2008061, 52-6, 7-2-1, and 163-1

CERT C guiliiees: MSC1&

See 6.55 Undefined BehaviodEWH and 6.56 Implemenation-definedBehavioufFAB.

6.54.3 Mechanism of failure

Language specificatis do not always uniquely define the behaviour of a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of compile, link, or run time)
implementations are permitted to choose from the set of behavgallowed by the language specificatiorhe
term 'unspecified behaviour' is sometimes applied to such behaviours, (language specific guidelines need to
analyze and document the terms used by their respective language).

108 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

A developer may use a construnta way that depends on a subset of the possible behaviours occuirhmy.
behaviour of a program containing such a usage is dependent on the translator used to build it always selecting
the 'expected’ behaviour.

Many language constructs may have unspedibehaviour and unconditionally recommending against any use of
these constructs may be impracticdtor instance, in many languages the order of evaluation of the operands
appearing on the leftand righthand side of an assignment is unspecified,ibunost cases the set of possible
behaviours always produce the same result.

The appearance of unspecified behaviour in a language specificatiecoignitionby the language designers that
in some cases flexibility is needed by software developers amddes a worthwhile benefit for language
translators; this usage is not a defect in the language.

The important characteristic is not the internal behaviour exhibited by a construct (such as the sequence of
machine code generated by a translator) but ixtegznal behaviour (that is, the one visible to a user of a

program). If the set of possible unspecified behaviours permitted for a specific use of a construct all produce the
same external effect when the program containing them is executed, then rehbgitde program cannot result in

a change of behaviour for that specific usage of the construct.

For instance, while the following assignment statement contains unspecified behaviour in many lanthetges
is, it is possible to evaluate either thfeor B operand first, followed by the other operand)

A =B;

in most cases the order in whighandB are evaluated does not affect the external behaviour of a program
containing this statement.

6.54.4 Applicable language characteristics

This vulnerability is imnded to be applicable to languages with the following characteristics:

1 Languages whose specification allows a finite set of more than one behaviour for how a translator
handles some construct, where two or more of the behaviours can result in differemeggernal
program behaviour.

6.54.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use language constructs that have specified behaviour.

1 Ensure tlat a specific use of a construct having unspecified behaviour produces a result that is the same
for all of the possible behaviours permitted by the language specification.

1 When developing coding guidelines for a specific language all constructs thatiinspecified behaviour
should be documented and for each construct the situations where the set of possible behaviours can
vary should be enumerated.

© ISTIEC2012¢ All rights reserved 10¢

WG 23/N 027 Baseline Edition 2TR 24772

6.54.6 Implications for standardization
In future standardization activities, the following items shobddconsidered:

1 Languages should minimize the amount of unspecified behaviours, minimize the number of possible
behaviours for any given "unspecified" choice, and document what might be the difference in external
effect associated with different choices.

6.55 Undefined Behaviour [EWF]

6.55.1 Description of application vulnerability

The external behaviour of a program containing an instance of a construct havde§ined behaviour, as defined
by the language specification, is not predictable.

6.55.2 Cross reference

JSF AV Rules:-25

MISRA C 2004:3, 1.5, 3.13.3,3.4,17.3,1.2,5.1, 18.2, 19.2, and 19.14

MISRA C++ 2008:13-1, 52-2, 162-4, and 162-5

CERT guidéines: MSC1&

See 6.54 Unspecified BehaviolBQHF and 6.56 Implemenation-definedBehavioufFAB.

6.55.3 Mechanism of failure

Language specifications may categorizelibhaviourof a language construct as undefined rather than as a
semantic violation (that is, agrroneous use of the language) because of the potentially high implementation cost
of detecting and diagnosing all occurrences of it. In this case no specific behaviour is required and the translator
or runtime system is at liberty to do anything it ptes (which may include issuing a diagnostic).

Thebehaviourof a program built from successfully translated source code containing a construct having
undefinedbehaviouris not predictable. For example, in some languages the value of a variable is addefin
before it is initialized.

6.55.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages that do not fully define the extent to which the use of a particular cabsdra violation of
the language specification.

1 Languages that do not fully define the behaviour of constructs during compile, link and program
execution.

6.55.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulability or mitigate its ill effects in the following ways:

110 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Ensuring that undefined language constructs are not used.

1 Ensuring that a use of a construct having undefined behaviour does not operate within the domain in
which the behaviour is undefinedVhen it is not possible to completely verify the domain of operation
during translation a runtime check may need to be performed.

1 When developing coding guidelines for a specific language all constructs that have untefiraetbur
should be documented. Ehtems on this list might be classified by the extent to whichltbkaviouris
likely to have some critical impact on the exterbahaviourof a program (the criticality may vary
between different implementations, for example, whether conversion betweleject and function
pointers has well definedehaviouy.

6.55.6 Implications for standardization

In future standardization activities, the following items should be considered:

1 Language designers should minimize the amount of undefirdwhviourto the extent possible and
practical.

9 Language designers should enumerate all the cases of undefined behaviour.

9 Language designers should provide mechanisms that permit the disabling or diagnosing of constructs tha
may produce undefined behaviau

6.56 Implemen tation -defined Behaviour [FAB]

6.56.1 Description of application vulnerability

Some constructs in programming languages are not fefindd (see5.54 Unspecified BehavioliBORF) and thus
leave compiler implementations to decide how the construct will operate. bEf@viourof aprogram,whose
source code contains one or more instances of constructs having implementsforedbehavioutr can change
when the source code is recompiled or relinked.

6.56.2 Cross reference

JSF AV Rules:-28

MISRA C 2004:3,1.5,3.13.3,3.4,1782,5.1, 18.2, 19.2, and 19.14
MISRA C++ 2008:29, 53-3, 7-3-2, and 95-1

CERT C guililees: MSC1&

ISO/IEC TR 15942:2000: 5.9

AdaQualityand Style Guide: 7.1.5 and 7.1.6

See 6.54 Unspecified BehaviolBOF and6.55 Undefined BehavioJEWH.

6.56.3 Mechanism of failure

Language specificatiomn® not always uniquely define tHeehaviourof a construct. When an instance of a
construct that is not uniquely defined is encountered (this might be at any of translatioirhek or program
execution) implementations are permitted to choose froreedt ofbehavious. The only difference from
unspecifiedoehaviouris that implementations are required to document how they behave.

© ISTIEC2012¢ All rights reserved 111

WG 23/N 027 Baseline Edition 2TR 24772

A developer may use a construct in a way that depends on a particular implementgtioed behaviour
occurring. Thebehaviour of a program containing such a usage is dependent on the translator used to build it
always selecting the 'expecteokhaviour

Some implementations provide a mechanism for changing an implementation's implemendatioed

behaviour(for example, se ofpragmas in source code). Use of such a change mechanism creates the potential
for additional human error in that a developer may be unaware that a changetaviourwas requestedtarlier

in the sourcecode and may write code thaegends orthe implementationdefinedbehaviourthat occurred

prior to that explicit change diehaviour.

Many language constructs may have implementatitfiinedbehaviourand unconditionally recommending
against any use of these constructs may be compfatapractical. For instance, in many languages the number
of significant characters in an identifier is implementataefined. Developers need to choose a minimum
number of characters and require that only translators supporting at least that nuribef,characters be used.

The appearance of implementatiadefinedbehaviourin a language specification is recognition by the language
designers that in some cases implementation flexibility provides a worthwhile benefit for language translators;
this usa@ is not a defect in the language.

6.56.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languages whose specification allows some variation in how a translator handiesconstruct, where
reliance on one form of this variation can result in differences in external progedravioutr

1 Language implementations may not be required to provide a mechanism for controlling implementation
definedbehaviour

6.56.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Document the set of implementatiedefined features an application depends upon, so that upon a
change of translatqrdevelopment tools, or target configuration it can be ensured that those
dependencies are still met

1 Ensure that a specific use of a construct having implementatafimedbehaviourproduces an external
behaviourthat is the same for all of the possititdehavious permitted by the language specification.

1 Only use a language implementation whose implementatiefinedbehavious are within a known
subset of implementatiordefinedbehavious. The known subset should be chosen so that the 'same
externalbehaviour condition described above is met.

1 Create highly visible documentation (perhaps at the start of a source file) that the default
implementationtdefinedbehaviouris changed within the current file.

1 When developing coding guidelines for a speciiiglaage all constructs that have implementation
definedbehaviourshall be documented and for each construct, the situations where the set of possible
behavious can vary shall be enumerated.

112 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 When applying this guideline on a project the functionality pded by and for changing its
implementationdefinedbehaviourshall be documented.
1 Verify code behaviour using at least two different compilers with two different technologies.

6.56.6 Implications for standardization
In future standardization activitieshé following items should be considered:

1 Portability guidelines for a specific language should provide a list of common implemerdafioed
behavious.

1 Language specifiers should enumerate all the cases of implemenidiimed behaviour

1 Language degners should provide language directives that optionally disable obscure language features.

6.57 Deprecated Language Features [MEM]

6.57.1 Description of application vulnerability

Ideally & code should conform to the current standard for the respective language. In reality though, a language
standard may change during the creation of a software system or suitable compilers and devalopme
environments may not be available for the new standard for some period of time after the standard is published.
Tosmooth the process of evolution, features that are no longer needed or which serve as the root cause of or
contributing factor for safetyr security problems are often deprecated to temporarily allow their continued use
but to indicate that those features may be removed in the future. The deprecation of a feature is a strong
indication that it should not be used. Other features, althomghformally deprecated, are rarely used and there
exist other more common ways of expressing the same function. Use of these rarely used features can lead to
problems when others are assigned the task of debugging or modifying the code containinfettoses.

6.57.2 Cross reference

JSF AV Rules: 8 and 11

MISRA C 2004: 1.1, 4.2, and 20.10

MISRA C++ 2008:0-1, 23-1, 25-1, 27-1, 52-4, and 180-2
AdaQualityand Style Guide: 7.1.1

6.57.3 Mechanism of failure

Most languages evolve over time. Soimes new features are added making other features extraneous.
Languages may have features that are frequently the basis for security or safety problems. The deprecation of
these features indicates that there is a better way of accomplishing the desinetidnality. However, there is

always a time lag between the acknowledgement that a particular feature is the source of safety or security
problems, the decision to remove or replace the feature and the generation of warnings or error messages by
compileNB G KF(G GKS FSIGdz2NBE aK2dzZ RyQid 6S dzaSRo DA@SY
possible and even likely that a language standard will change causing some of the features used to be suddenly
deprecated. Modifying the software cére costly and time consuming to remove the deprecated features.
However, if the schedule and resources permit, this would be prudent as future vulnerabilities may result from

© ISTIEC2012¢ All rights reserved 113

WG 23/N 027 Baseline Edition 2TR 24772

leaving the deprecated features in the code. Ultimately the deprecated fesitiielikely need to be removed
when the features are removed

6.57.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:

1 All languageshat have standards, th@h some only have defacto standards.
1 All languages that evolve over time and as such could potentially have deprecated features at some point.

6.57.5 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability atigate its ill effects in the following ways:

1 Adhere to the latest published standard for which a suitable complier and development environment is
available.

1 Avoid the use of deprecated features of a language.

i Stay abreast of language discussions in laggwser groups and standards groups on the Internet.
Discussions and meeting notes will give an indication of problem prone features that should not be used
or should beused with caution.

6.57.6 Implications for standardization
In future standardizatio activities, the following items should be considered:

1 Obscure language features for which there are commonly used alternatives should be considered for
removal from the language standard.

1 Obscure language features that have routinely been found to bedbecause of safety or security
vulnerabilities, or that are routinely disallowed in software guidance documents should be considered for
removal from the language standard.

1 Language designers should provide language mechanisms that optionally disatdeaded language
features.

7. Application Vulnerabilities

7.1 General

This clause provides descriptions of selected application vulnerabilities which have been found and exploited in a
number of applications and which have well known mitigation techeg) and which result from design decisions
made by coders in the absence of suitable language library routines or other mechahkisnibese
vulnerabilities, each description provides:

1 asummary of the vulnerability,

1 typical mechanisms of failure, and

9 techniques that programmers can use to avoid the vulnerability

114 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

7.2 Terminology

These vulnerabilities are applicatioelated rather than languageelated. They are written in a language
independent manner, and there are no corresponding sections iratimexes.

7.3 Unspecified Functionality [BVQ]

7.3.1 Description of application vulnerability

Unspecified functionalitis code that may be executed, but whose behaviour does not contribute to the
requirements of the applicatior? KAt S GKAA& YI& 0S y2 Y2NB (GKFYy Fy I Y
in a spreadsheetit does raise questions about thevel of control of the development process.

InasecurityONR G A OFf SY@GANRYYSY(d LI NIOAOdz I NI &> RESNRSGST P
illegitimate access to the system on which it is eventually executed, irrespective of wile¢happlication has
obvious security requirements.

7.3.2 Cross reference

JSF AV Rule: 127
MISRA C 2004: 2.2,2.3,2.4,and 14.1
XYQ: Dead and Deactivated code.

7.3.3 Mechanism of failure

Unspecified functionalitijs not a software vulnerability per se, but more a development issue. In some cases,
unspecified functionality may be added by a developer without the knowledge of the development organization.
In other cases, typically Easter Eggs, the functionality is uifigukas far as the user is concerned (nobody buys a
spreadsheet expecting to find it includes a flight simulator), but is specified by the development organization. In
STFSOUO GKSe 2yfeée NBOSIE I &adzoaSd 2F GKS LINPINFYQa

In the firstcase, one would expect a well managed development environment to discover the additional
functionality during validation and verification. In the second case, the user is relying on the supplier not to
release harmful code.

Ly SFFSOGZ I HNBINNBQIINS| dNREXS ¥ aK2dzZ R 0SKIF @S Ay
¢KS WFYyR R2 y20KAYy3 StasSqQ OftldasS ra 27608y yz2i SELX
7.3.4 Avoiding the vulnerability or mitigating its effects

End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Programs and development tools that are to be used in critical applications should come from a
developer who uses a recognized and audited development process for the develophtleose
programs and tools-or example: ISO 9001 or CMMI®.

1 The development process should generate documentation showing traceability from source code to
NBIljdZANBYSy(ias Ay STFFSOG | yagSNR yWherdundpecifieda (KA &

© ISTIEC2012¢ All rights reserved 11E

WG 23/N 027 Baseline Edition 2TR 24772

functionality is there for a legitimate reason (such as diagnostics required for developer maintenance or
enhancement), the documentation should also record thigs not unreasonable for customers of
bespoke critical code to ask to see such tracealabtypart of their acceptance of the application.

7.4 Distinguished Values in Data Types [KLK]

7.4.1 Description of application vulnerability

Sometimes, in a type representation, certain values are distinguished as not being members of the type, but
rather as providing auxiliary informatiorexamples include special characters used as string terminators,
distinguished values usdd indicate out of type entries iBQL(Structured Query Languagdatabase fields, and
sentinels used to indicate the bounds of queues or other data structuMdsen the usage pattern of code

containing distinguishedalues is changed, it may happen that the distinguished value happens to coincide with a
legitimate intype value. In such a case, the value is no longer distinguishable frortygpeinalue and the

software will no longer produce the intended results.

7.4.2 Cross reference

CWE:
20. Improper input validation
137. Representation errors
JSFAV Rule151

7.4.3 Mechanism of failure

' GRAAOGAYIdAEAKSR GFfdzS¢ 2NJ I+ bYF3IAO ydzYoSNh Ay- (KS
of-type infarmation. Some examples include the following:

 Theuseofaspecialcodrichasinné ¥ G2 AYRAOIGS GKS GSNXYAYLFGAZY
f The use of a special vallich ast X pé = a GKS AYRAOFGAZ2Y GKIFG (K
is nvalid.

If the use of the software is later generalized, the ospecial value can become indistinguishable from valid
data. Note that the problem may occur simply if the pattern of usage of the software is changed from that
'y dAOALI GSR dedignér& B may alsb boaur iNtBeQaftware is reused in other circumstances.

An example of a change in the pattern of usage is this: An organization logs visitors to its buildings by recording
their names and national identity numbers or social secumignbers in a databaseOf course, some visitors

f SAAGAYIGSE @ R2y QiU KIFI@S 2N R2y Qi 1y26 GKSANI a20Alf
0 KS 02 Y LldziRedeptishists AtBnekiuilding have adopted the convention of using tReSco é@5p-p p
ppppé G2 RSaAIyl G SReCeptibrisk AtBndthe? HuildiSghhde @séd3he dame code to
designate foreign nationalsiVhen the databases are merged, the children are reclassified as foreign nationals or
viceversa depending on vith set of receptionists are using the newly merged database.

An example of an unanticipated change due to reuse is this: Suppose a software component analyzes radar data,
recording data every degree of azimuth from 0 to 3P%ckets of data are sent taleer components for
processing, updating displays, recording, and so%ince all degree values are npegative, a distinguished

116 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

value of-1 is used as a signal to stop processing, compute summary data, close files, andvemprof the
components ag to be reused in a new system with a new radar analysis compowever the new
component represents direction by numbers in the rarty@0 degrees to 179 degree®¥hen an azimuth value
of -1 is provided, the downstream components will interpret tlaatthe indication to stop processin{f.the
magic value is changed to, sa§99, the software is still at risk of failing when future enhancements (say,
counting accumulated degrees on complete revolutions) i@@9 into the range of valid data.

Distinguished values should be avoided. Instead, the software should be designed to use distinct variables to
encode the desired oubf-type information. For example, the length of a character string might be encoded in a
dope vector and validity of data emts might be encoded in distinct Boolean values.

7.4.4 Avoiding the vulnerability or mitigating its effects

End usergan avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use auxiliary variables (perhaps enclosed in variantrdsjdo encode oubf-type information.

1 Use enumeration types to convey category informati@uo not rely upon large ranges of integers, with
distinguished values having special meanings.

1 Use named constants to make it easier to change distinguishedsralue

7.5 Adherence to Least Privilege [XYN]

7.5.1 Description of application vulnerability
Failure to adhere to the principle of least plage amplifies the risk posed by other vulnerabilities.
7.5.2 Cross reference

CWE:
250. Design Principle Violation: Failure to Use Least Privilege
CERT C guililees: POS0OZ

7.5.3 Mechanism of failure

This vulnerability type refers to cases in which ppliation grants greater access rights than necessary.
Depending on the level of access granted, this may allow a user to access confidential inforfRatierample,
programs that run with root privileges have caused innumeralldXsecuity disasters. It is imperative that you
carefully review privileged programs for all kinds of security problems, but it is equally important that privileged
programs drop back to an unprivileged state as quickly as possibieit the amount of damagehiat an
overlooked vulnerability might be able to cause. Privilege management functions can behave in setmanless
obvious ways, and they have different quirks on different platforifisese inconsistencies are particularly
pronounced if you are transitiing from one norfroot user to another.Signal handlers and spawned processes
run at the privilege of the owning process, so if a process is running as root when a signal fires-pracsshis
executed, the signal handler or splbocess will operate ith root privileges.An attacker may be able to leverage
these elevated privileges to do further damagko grant the minimum access level necessary, first identify the
different permissions that an application or user of that application will need téopm their actions, such as file

© ISTIEC2012¢ All rights reserved 117

WG 23/N 027 Baseline Edition 2TR 24772

read and write permissions, network socket permissions, and so fattlen explicitly allow those actions while
denying all else.

7.5.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoidg vulnerability or mitigate its ill effects in the following ways:

1 Very carefully manage the setting, management and handling of privileges. Explicitly manage trust zones
in the software.
1 Follow the principle of least privilege when assigning accessrighentities in a software system.

7.6 Privilege Sandbox Issues [XY(

7.6.1 Description of application vulnerability

A variety of vulnerabiliis occur with improper handling, assignment, or management of privilefesse are
especially present in sandbox environments, although it could be argued that any privilege problem occurs within
the context of some sort of sandbox.

7.6.2 Cross reference

CWE:

266. Incorrect Privilege Assignment

267. Privilege Defined With Unsafe Actions

268. Privilege Chaining

269. Privilege Management Error

270. Privilege Context Switching Error

272. Least Privilege Violation

273. Failure to Check Whether PrivilegesevM@ropped Successfully

274. Failure to Handle Insufficient Privileges

276. Insecure Default Permissions

732 Incorrect Permission Assignment for Critical Resource
CERT C guililees: POS3€

7.6.3 Mechanism of failure

The failure to drop system privilegeden it is reasonable to do so is nat applicationvulnerability by itself. It
does, however, serve to significantly increase the severity of other vulnerabilkis=ording to the principle of
least privilege, access should be allowed only wherabs®lutely necessary to the function of a given system,
and only for the minimal necessary amount of timeny further allowance of privilege widens the window of
time during which a successful exploitation of the system will provide an attacker witlsdahze privilege.

Many situations could lead to a mechanism of failure:

9 A product could incorrectly assign a privilege to a particular entity.
1 A particular privilege, role, capability, or right could be used to perform unsafe actions that were not
intended even when it is assigned to the correct entifilote that there are two separate stiategories

118 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

here: privilege incorrectly allows entities to perform certain actions; and the object is incorrectly
accessible to entities with a given privilege.)

9 Two dstinct privileges, roles, capabilities, or rights could be combined in a way that allows an entity to
perform unsafe actions that would not be allowed without that combination.

1 The software may not properly manage privileges while it is switching betwiéfenetht contexts that
cross privilege boundaries.

1 A product may not properly track, modify, record, or reset privileges.

1 In some contexts, a system executing with elevated permissions will hand off a processifiter
objectto another process/userlf the privileges of an entity are not reduced, then elevated privileges are
spread throughout a system and possibly to an attacker.

1 The software may not properly handle the situation in which it has insufficient privileges to perform an
operation.

1 A progam, upon installation, may set insecure permissions for an object.

7.6.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

f The principle of least priviiez when assigning access rights to entities in a software system should be
followed. The setting, management and handling of privileges should be managed very cargpdly.
changing security privileges, one should ensure that the change was successful.

f Consider following the principle of separation of privilegRquire multiple conditions to be met before
permitting access to a system resource.

1 Trust zones in the software should be explicitly manadédt all possible, limit the allowance of system
privilege to small, simple sections of code that may be called atomically.

1 As soon as possible after acquiring elevated privilege to call a privileged function sichat§) , the
program should drop root privilege and return to the privilege levehefihvoking user.

1 In newer Windows implementations, make sure that the mstoken has the SelmpersonBté&vilege

7.7 Executing or Loading Untrusted Code [XYS

7.7.1 Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can cause an
application to execute malicus commands (and payloads) on behalf of an attacker

7.7.2 Cross reference

CWE:

114. Process Control

306. Missing Authentication for Critical Function
CERT C guiliiees: PREOZ, ENVOZ, and ENVGG

7.7.3 Mechanism of failure

Process control vulnerdiies take two forms:

© ISTIEC2012¢ All rights reserved 11¢

WG 23/N 027 Baseline Edition 2TR 24772

1 An attacker can change the command that the program executes so that the attacker explicitly controls
what the command is.

1 An attacker can change the environment in which the command executes so that the attacker implicitly
controlswhat the command means.

Considering only the first scenario, the possibility that an attacker may be able to control the command that is
executed, process control vulnerabilities occur when:

91 Data enters the application frora sourcethat is not trusted

9 The data is used as or as part of a string representing a command that is executed by the application.

1 By executing the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

7.7.4 Avoiding the vuln erability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Libraries that are loaded should be well understood and come from a trusted source with a digital
signature. The appliction can execute code containedmativelibraries, which often contain calls that
are susceptible to other security problems, such as bufferflows or command injection.

¢ All native libraries should be validated

1 Determine if the application requireshe use of the native library. tan bevery difficult to determine
what these libraries actually do, and the potential for malicious code is high.

1 To help prevent buffer overflow attacks, validate all input to ratialls for content and length.

{1 If the mative library does not come from a trusted source, review the source code of the librhey.
library should be built from the reviewed source before using it.

7.7.5 Implications for standardization

In future standardization activities, the followingiits should be considered:

1 Language independent AR&s code signing and data signisigould be defined, allowing each
Programming Language to define a binding.

7.8 Memory Locking [XZX]

7.8.1 Description of application vulnerability

Sensitive data stored in memory that was not locked or that has been improperly locked may be written to swap
files on disk by the virtual memory manager.

7.8.2 Cross reference

CWE:
591.Sensitive Data Storage in Improperly Locked Memory
CERT C guililees: MEMO&C

120 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

7.8.3 Mechanism of failure

Sensitive data that is not kept cryptographically secure may become visible to an attacker by any of several
mechanisms.Some operating systems mayite memory to swap or page files that may be visible to an attacker.
Some operating systems may provide mechanisms to examine the physical memory of the system or the virtual
memory of another applicationApplication debuggers may be able to stop theget application and examine or
alter memory.

7.8.4 Avoiding the vulnerability or mitigating its effects
In almost all cases, these attacks require elevated or appropriate privilege.
Software developers can avoid the vulnerability or mitigate itsféa$ in the following ways:

1 Remove debugging tools from production systems.

1 Log and audit all privileged operations.

1 Identify data that needs to be protected and use appropriate cryptographic and other data obfuscation
techniques to avoid keeping plaintexersions of this data in memory or on disk.

9 If the operating systenallows, clear the swap file on shutdown.

Note: Several implementations of the PO&iKck() and the Microsoft Window¥irtualLock()
functions will prevent the named memory region from being written to a swap or pagefoeever, such
usage is not portable.

Systems that provide a "hibernate" facility (such as laptops) will write all of physical memory to a file that may be
visible to an attacker on resume.

7.8.5 Implications for standardization

In future standardization activities, the following items should be considered:

1 Language independent APIs foemory lockingshould be defined, allowing each Programming Language
to define a binding.

7.9 Resource Exhaustion [XZP]

7.9.1 Description of application vulnerability

The application is susceptible to generating and/or accepimgxcessive number of requests that could

potentially exhaust limited resources, such as memory, file system storage, database connection pool entries, or
CPU.This could ultimately lead to a denial of service that could prevent any other applicationatcessing

these resources.

7.9.2 Cross reference

CWE
400. Resource Exhaustion

© ISTIEC2012¢ All rights reserved 121

WG 23/N 027 Baseline Edition 2TR 24772

7.9.3 Mechanism of failure

There are two primary failures associated with resource exhausiithe most common result of resource
exhaustionis denial of serviceln some cases an attacker or a defect may cause a system to fail in an unsafe or
insecure fashion by causing an application to exhaust the available resources.

Resource exhaustion issues are generally understood but are far maceldifd prevent. Taking advantage of
various entry points, an attacker could craft a wide variety of requests that would cause the site to consume
resources.Database queries that take a long time to process are daafg{Denial of Service) targetsAn

attacker would only have to write a few lines of Perl code to generate enough traffic to exceed the site's ability to
keep up. This would effectively prevent authorized users from using the site at all.

Resources can be exiisted simply by ensuring that the target machine must do much more work and consume
more resourceso service a request than the attacker must do to initiate a requ&sevention of these attacks
requiresthat the target system either recognizdset attack and denies that user further access for a given
amount of time or uniformly throttles all requests make it more difficult to consume resources more quickly
than they can again be freed.he first of these solutions is an issue in itself tHowgince it may allow attackers

to prevent the use of the system by a particular valid uskthe attacker impersonates the valid user, he may be
able to prevent the user from accessing the server in quesfidre second solution is simply difficult to

effectively institute and even when properly done, it does not provide a full soluticsimply makes the attack
require more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion issysteais which "fail open.”

This means that in the event of resource consumption, the system fails in such a way that the state of the system
T and possibly the security functionality of the systemare compromised.A prime example of this can be

foundin old switches that were vulnerable to "matdaittacks (so named for a tool developed by Dug3ong

These attacks flooded a switch with randorfitiernet Protocolland MAGQMedia Access Contraddress
combinations, therefore exhausting the switch's cache, which held the information of which port corresponded to
which MAC addresse®nce this cache was exhausted, the switch would fail in an insecure way and would begin
to act simply as a hub, broadcasi all traffic on all ports and allowing for basic sniffing attacks.

7.9.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implement throttling mechaisms into the system architecturéhe best protection is to limit the
amount of resources that an application can cause to be expendextrong authentication and access
control model will help prevent such attacks from occurring in the first plabe. authentication
application should be protected against denial of service attacks as much as poksititeng the
database access, perhaps by caching result sets, can help minimize the resources experfdetier
limit the potential for a denial foservice attack, consider tracking the rate of requests received from users
and blocking requests that exceed a defined rate threshold.

1 Ensure that applications have specific limits of scale placed on them, and ensure that all failures in
resource allocabn cause thepplication to fail safely.

122 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

7.10 Unrestricted File Upload [CBF

7.10.1 Description of application vulnerability

A first step often ged to attack is to get an executable on the system to be attacked. Then the attack only needs
to execute this code. Many times this first step is accomplished by unrestricted file upload. In many of these
attacks, the malicious code can obtain the sgmigilege of access as the application, or even administrator
privilege.

7.10.2 Cross reference

CWE:

434.Unrestricted Upload of File with Dangerous Type

7.10.3 Mechanism of failure

There are several failures associated with an uploaded file:

=A =4 =4 =4 =4 4 A

Executingarbitrary code.

Phishing page added to a website.

Defacing a website.

Creating a vulnerability for other attacks.

Browsing the file system.

Creating a denial of service.

Uploading a malicious executable to a server, which could be executed with admorigirizilege.

7.10.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

= =4 =4 =

Allow only certain file extensions, commonly known aghite-list.

Disallow certain file extensions, commonly known daaklist.

Use a utility to check the type of the file.

Check the contentype in the header information of all files that are uploadékhe purpose of the
contenttype field & to describe the data contained in the body completely enough that the receiving
agent can pick an appropriate agent or mechanism to present the data to the user, or otherwise deal with
the data in an appropriate manner.

Use a dedicated location, which @®not have execution privileges, to store and validate uploaded files,
and then serve these files dynamically.

Require a unique file extension (named by the application developer), so only the intended type of the file
is used for further processing. Bagpload facility of an application could handle a unique file type.
Remove all Unicode characters and all control charatfess the filename and the extensions.

S Seehttp://www.ascii.cl/controkcharacters.htm

© ISTIEC2012¢ All rights reserved 123

http://www.ascii.cl/control-characters.htm

WG 23/N 027 Baseline Edition 2TR 24772

1 Set a limit for the filename length; including the file extension. IN&aR§New Technology File System)
partition, usually a limit of 255 characters, without path information will suffice.
1 Set upper and lower limits on file size. Setting these limits can help in denial of service attacks.

All of the above have some short comings, for example, g .Gifl-file may contain a frelorm comment field,

and therefore a sanity check of the fBecontents is not always possible. An attacker can hide code in a file
segment that will still bexecuted by the application or server. In many cases it will take a combination of the
techniques from the above list to avoid this vulnerability.

7.10.5 Implications for standardization
In future standardization activities, the following items shouldcbasidered:

1 Language independent APIs for file identification should be defined, allowing each Programming
Language to define a binding.

7.11 Resource Names [HTS]

7.11.1 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a system on which software executes is

very common. Differences in the conventions used by operating systems can result in sigeiiiecaygs in
behaviourwhen the same program is executed under different operating systems. For instance, the directory
structure, permissible characters, case sensitivity, and so forth can vary among operating systems and even
among variations of the sanaperating systemFor exampleMicrosoftLINR K A 0 AfUé&F POkl K2YésT 6 dzd !
Linuxand OSE LISNI Ay 3 &deadasSvya tt2¢ ye OKINIOG:NM SEOSLI
filename.

Some operating systems are case sensitive while others are not. Grasersensitive operating systems,
RSLISYRAY3I 2y (KS a2FGgtrNBE 60SAy3 dzaSRxX GKS alyYS FAfS
GCL[9b! a9é I y Rothesamefile2 dzf R NB T S NJ

Some operating systems, particularly older ones, only rely on the significance of thedivatacters of the file

name. n can be unexpectedly small, such as the first 8 characters in the case of &vamli@dures which would
OFdzaS aFAESYlIYSmMeéZ GFAESYlIYSHE YR aFAESYlFYSoe (G2

Variations in the filename, named resource or external identifier being referenced can be the basis for various
kinds of problems.Such mistakesr ambiguity carbe unintentionalor intentional, and in either case they can be
potentially exploited, ikurreptitious behaviour is a goal.

7.11.2 Crossreference

JSF AV Rules: 46, 51, 53, 54, 55, and 56
MISRA C 2004: 1.4 and 5.1
CERT C guiliies: MSCOZ and MSC1C

124 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

7.11.3 Mechanism of Failure

The wrong named resource, such as a file, may be used within a program in a form that provides access to a
resource that was not intended to be accessed. Attackers could exploit this situation to intentionally misdirect
acces of a named resource to another named resource.

7.11.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Where possible, use an API that provides atkmaommon set of conventions for naming and accessing
external resources, such as POSIX, ISO/IEC 9945:2003 (IEEE S{200003.1

1 Analyze the range of intended target systems, develop a suitable API for dealing with them, and
document the analysis

1 Ensurethat programs adapt theibehaviourto the platform on which they are executing, so that only the
intended resources are accessed. The means that information on such characteristics as the directory
separator string and methods of accessing parent donees need to be parameterized and not exist as
fixed strings within a program.

1 Avoid creating resource names that are longer than the guaranteed unique length of all potential target
platforms.

1 Avoid creating resources, which atiéferentiatedonly by tre case in their names.

1 Avoidall Unicode characters and all control characténdilenames and the extensions.

7.11.5 Implications for standardization
In future standardization activities, the following items should be considered:

1 LanguageéndependentAPIs for interfacing with external identifiers shoulddefined, allowing each
Programming Language to define a binding

7.12 Injection [RST]

7.12.1 Description of applicatio n vulnerability

Injection problems span a wide range of instantiatiom$ie basic form of this weakness involves the software
allowing injection of additional data in input data alter the control flow of the processCommand injection
problems are aubset of injection problers in which the process can be tricked into calling external processes of
Fy Fadlr Ol SNRa OK2A0S GKNRdAzZAK (GKS ANMWBOGA2Y 2F 02YY
leading/internal/trailing special elements injected into an d@pation through input can be used to compromise a
system. As data is parsed, improperly handled multiple leading special elements may cause the process to take
unexpected actions that result in an attacRoftware may allow the injection of special elamethat are non

typical but equivalent to typical special elements with control implicatiofisis frequently occurs when the

product has protected itself against special element injectiBoftware may allow inputs to be fed directly into

an output fike that is later processed as codeich as library file or template Line or section delimiters injected

into an application can be used to compromise a system.

6 Seehttp://www.ascii.cl/controkcharacters.htm

© ISTIEC2012¢ All rights reserved 12E

http://www.ascii.cl/control-characters.htm

WG 23/N 027 Baseline Edition 2TR 24772

Many injection attacks involve the disclosure of important informatioin terms of both déa sensitivity and
usefulness in further exploitation. In some cases injectable code controls authentication; this may lead to a
remote vulnerability.Injection attacks are characterized by the ability to significantly change the flow of a given
processand in some cases, to the execution of arbitrary coData injection attacks lead to loss of data integrity
in nearly all cases as the contglhne data injected is always incidental to data recall or writi@ffen the

actions performed by injected otrol code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected into
input to effect the execution of predefined SQL commang8gice SQL databases generally hold sensitive data,
loss of onfidentiality is a frequent problem with SQL injection vulnerabilitiégoorly implemented SQL

commands are used to check user names and passwords, it may be possible to connect to a system as another
user with no previous knowledge of the passwotflauthorization information is held in a SQL database, it may

be possible to change this information through the successful exploitation of the SQL injection vulnerability. Just
as it may be possible to read sensitive information, it is also possiblake changes or even delete this

information with a SQL injection attack.

Injection problems encompass a wide variety of issuedl mitigated in very different waysThe most important
issue to note is that all injection problems share one thing in commadahey allow for the injection of control

data into the user controlled dataThis means that the execution of the process may be altered by sending code
in through legitimate data channels, using no other mechanigvhile buffer overflows and many ot flaws

involve the use of some further issue to gain execution, injection problems need only for the data to be parsed.
Many injection attacks involve the disclosure of important information in terms of both data sensitivity and
usefulness in further gtoitation. In some cases injectable code controls authentication, this may lead to a
remote vulnerability.

7.12.2 Cross reference

CWE:
74. Failure to Sanitize Data into a Different Plane ('Injection’)
76. Failure to Resolve Equivalent Special Elemetasibifferent Plane
TYy® CIFLAfdzNB G2 {FyAGATS 5FGF Ayd2 Fy h{ [/ 2YYlIYyR 6
89: Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection")
dnd® CFAfdzNB (2 {FyAGATS 51GF Ayid2 [5!'t vdzsSNASa ol
91. XML Injection (aka Blind XPath Injection)
92. Custom Special Character Injection
95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka 'Eval Injection')
97. Failure to Sanitize Serv8ide Includes (SSI) Within a Web Page
BLYAdZFFAOASY(H [/ 2yGNREt 2F CAtSYlFYS F2NJ LyOf dzZRSkwSl|
hpd LYyadzFFAOASYG /2y iNRE 2F wS&az2d2NOS LRSYUGATFASNE
144. Failure to Sanitize Line Delimiters
145. Failure to Sanitize SectiDelimiters
161. Failure to Sanitize Multiple Leading Special Elements
163. Failure to Sanitize Multiple Trailing Special Elements
165. Failure to Sanitize Multiple Internal Special Elements
166. Failure to Handle Missing Special Element

126 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

167. Failure to Hatle Additional Special Element
168. Failure to Resolve Inconsistent Special Elements
564. SQL Injection: Hibernate

CERT C guililees: FIO3€C

7.12.3 Mechanism of failure

A software system that accepts and executes input in the form of operating systemaruas §uch as

system() ,exec() ,open()) could allow an attacker with lesser privileges than the target software to execute
commands with the elevated privileges of the executing proc€&snmand injection is a common problem with
wrapper programs Often, parts of the command to be run are controllable by the end u#fes. malicious user
injects a character (such as a seamion) that delimits the end of one command and the beginning of another, he
may then be able to insert an entirely new and unrethtdmmand to do whatever he pleases.

Dynamically generating operating system commands that include user input as parameters can lead to commanc
injection attacks.An attacker can insert operating system commands or modifiers in the user input that cse cau
the request to behave in an unsafe mann&uch vulnerabilities can be very dangerous and lead to data and
system compromiself no validation of the parameter to the exec command exists, an attacker can execute any
command on the system the applioati has the privilege to access.

There are two forms of command injection vulnerabilitiés attacker can change the command that the
program executes (the attacker explicitly controls what the commanddikgrnatively, an attacker can change
the envibnment in which the command executes (the attacker implicitly controls what the command means).
The first scenario where an attacker explicitly controls the command that is executed can occur when:

{1 Data enters the application from an untrusted source.

! Thedata is part of a string that is executed as a command by the application.

1 By executing the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

Eval injection occurs when the software allowgtlits to be fed directly into a functiosiich as'eval") that

dynamically evaluates and executes the input as code, usually in the same interpreted language that the product
uses. Eval injection is prevalent in handler/dispatch procedures that might wairtvoke a large number of

functions, or set a large number of variables.

A PHBHAile inclusion occurs when a PHP product usegiire orinclude statements, or equivalent
statements, that use attackezontrolled data to identify code ddTML(HyperText Markup Language)be
directly processed by the PHP interpreter before inclusion in the script.

A resource injection issue occurs when the following two conditions are met:

1 An attacker can specify the idiiier used to access a system resource. For example, an attacker might be
able to specify part of the name of a file to be opened or a port number to be used.

1 By specifying the resource, the attacker gains a capability that would not otherwise be pernkitie
example, the program may give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the attacker, or transmit sensitive information to a thady server.Note:
Resource injection that involves resouscgored on the file system goes by the name path manipulation

© ISTIEC2012¢ All rights reserved 127

WG 23/N 027 Baseline Edition 2TR 24772

and is reported in separate categorgeethe 7.18 Path TraversdEWR description for further detds of
this vulnerability. Allowing user input to control resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

Line or section delimiters injected into an application can be used to compromise a sys$elata is parsed, an
injected/absent/malformed delimiter may cause the process to take unexpected actions that result in an attack.
One example of a section delimiter is the boundary string in a multi&vtE (Multipurpose Internet Mail
Extensionymessage. In many cases, doubled line delimiters can serve as a section delimiter.

7.12.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate itdfélots in the following ways:

1 Assume all input is malicioutlse an gpropriate combination of blacksts and whitelists to ensure only
valid, expected and appropriate input is processed by the system.

1 Narrowly defie the set of safe characters based on the expected values of the parameter in the request.

91 Developers should anticipate that delimiters and special elements would be
injected/removed/manipulated in the input vectors of their software system and appropriat
mechanisms should be put in place to handle them.

1 Implement SQL strings using prepared statements that bind variaBlepared statements that do not
bind variables can be vulnerable to attack.

9 Use vigorous whitdist style checking on any user inptiat may be used in a SQL commafather than
escape metacharacters, it is safest to disallow them entirely since the later use of data that have been
entered in the database may neglect to escape naetaracters before use.

1 Follow the principle of leagirivilege when creating user accounts to a SQL databdsers should only
have the minimum privileges necessary to use their account. If the requirements of the system indicate
that a user can read and modify their own data, then limit their privilesgethey cannot read/write
others' data.

1 Assign permissions to the software system that prevents the user from accessing/opening privileged files.

1 Restructure code so that there is not a need to usedtal() utility.

7.13 Cross-site Scripting [XYT]

7.13.1 Description of application vulnerability

Crosssite scripting XS$occurs when dynamically generated web pages dispfayt, such as logimmformation

that is not properly validated, allowing an attacker to embed malicious scripts into the generated page and then
execute the script on the machine of any user that views the site. If successfulsiteossripting vulnenailities

can be exploited to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for a variety of
nefarious purposes.

7.13.2 Cross reference
CWE:

79. Failure to Preserve Web Page Structure ('GsitssScripting’)

128 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

80. Failure to Sanitize ScrRelated HTML Tags in a Web Page (Basic XSS)
81. Failure to Sanitize Directives in an Error Message Web Page

82. Failure to Sanitize Sdrip Attributes of IMG Tags in a Web Page

83. Failure to Sanitize Script in Attributes in a Web Page

84. Failure to Resolve Encoded URI Schemes in a Web Page

85. Doubled Character XSS Manipulations

86. Invalid Characters in ldentifiers

87. Alternate XSS ®8px

7.13.3 Mechanism of failure

Crosssite scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious code,
generally JavaScripio a different end userWhen a web application uses input fronuser in the output it

generates without filtering it, an attacker can insert an attack in that input and the web application sends the
attack to other usersThe end user trusts the web application, and the attacks exploit that trust to do things that
would not normally be allowedAttackers frequently use a variety of methods to encode the malicious portion of
the tag, such as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two categoreedsdnd reflected.Stored attacks are those

where the injected code is permanently stored on the target servers in a database, message forum, visitor log,
and so forth. Reflected attacks are those where the injected code takes another route to the giatimas in an
email message, or on some other servi¢hen a user is tricked into clicking a link or submitting a form, the
injected code travels to the vulnerable web server, which reflects the attack back to the user's browser. The
browser then execuds the code because it came from a 'trusted' serveor a reflected XSS attack to work, the
victim must submit the attack to the serverhis is still a very dangerous attack given the number of possible
ways to trick a victim into submitting such a madus request, including clicking a link on a malicious Web site, in
an email, or in aimter-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to avoid thel
in most applications. It is rafively easy for an attacker to find XSS vulnerabiliti&sme of these vulnerabilities

can be found using scanners, and some exist in older web application servers. The consequence of an XSS atta
the same regardless of whether it is stored or retiéet

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end user
that range in severity from an annoyance to complete account comproniise.most severe XSS attacks involve
disclosure of the user's ssion cookie, which allows an attacker to hijack the user's session and take over their
account. Other damaging attacks include the disclosure of end user files, installation of Trojan horse programs,
redirecting the user to some other page or site, anddifying presentation of content.

Crosssite scripting (XSS) vulnerabilities occur when:

1 Data enters a Web application through an untrusted source, most frequently a web request. The data is
included in dynamic content that is sent to a web user withaeitlg validated for malicious code.

1 The malicious content sent to the web browser often takes the form of a segment of Java3dripay
also include HTML, Flash or any other type of code that the browser may exdtde/ariety of aacks
based on XSS is almost limitless, but they commonly include transmitting private data like cookies or

© ISTIEC2012¢ All rights reserved 12¢

WG 23/N 027 Baseline Edition 2TR 24772

other session information to the attacker, redirecting the victim to web content controlled by the
attacker, or performing other malicious operat®on the user's machine under the guise of the
vulnerable site.

Crosssite scripting attacks can occur wherever an untrusted user has the ability to publish content to a trusted
web site. Typically, a malicious user will craft a cliside script, whicht when parsed by a web browser
performs some activity (such as sending all site cookies to a giveaileaddress)If the input is unchecked, this
script will be loaded and run by each user visiting the web Siace the site requesting to run tiseript has

access to the cookies in question, the malicious script does &lsere are several other possible attacks, such as
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as trustworthy;
cookie theft 8 however by far the most commomll of these attacks are easily prevented by ensuring that no
script tagst or for good measure, HTML tags attallre allowed in data to be posted publicly.

Specific instances of XSS are:

1 'Basic' XSS involves a complietek of cleansing of any special characters, including the most fundamental
XSS elements such as'"">", and '&".

1 A web developer displays input on an error pagigch asa customized 403 Forbidden pagdfan
attacker can influence a victim to vievefjuest a web page that causes an error, then the attack may be
successful.

1 A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks.
Attackers can embed XSS exploits into the values for IMG attritatiebdsSRC) that is streamed and
then executed in a victim's browseNote that when the page is loaded into a user's browser, the exploit
will automatically execute.

9 The software does not filtervaSript:" or other URIs (Uniform Resource Identifiefjom dangerous
attributes within tags, such asmmouseover , onload , onerror , orstyle

1 The web application fails to filter input for executable script disguised with URI encodings.

1 The web applicatiofails to filter input for executable script disguised using doubling of the involved
characters.

1 The software does not strip out invalid characters in the middle of tag names, schemes, and other
identifiers, which are still rendered by some web browséia ignore the characters.

1 The software fails to filter alternate script syntax provided by the attacker.

Crosssite scripting attacks may occur anywhere that possibly malicious users are allowed to post unregulated
material to a trusted web site for theonsumption of other valid userd’he most common example can be found
in bulletin-board web sites that provide web based mailingdistle functionality. The most common attack
performed with crosssite scripting involves the disclosure of informatitored in user cookiesln some
circumstances it may be possible to run arbitrary code on a victim's computer whenrs@®ssripting is

combined with other flaws.

7.13.4 Avoiding the vulnerability or mitigating its effects

Software developers can awbihe vulnerability or mitigate its ill effects in the following ways:

§ Carefully check each input parameter against a rigsnoositive specification (whitkst) defining the
specificcharacters and format allowed.

130 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Allinput should beanitized, not just parameters that the user is supposed to specify, but all data in the

request, including hidden fields, cookies, head#rs,URL(Uniform Resource Locatdt¥elf, and so
forth.

1 A common mistake thdeads to continuing XSS vulnerabilities is to validate only fields that are expected

to be redisplayed by the site.
1 Data is frequently encountered from the request that is reflected by the application server or the

application that the development team ditbt anticipate. Also, a field that is not currently reflected may

be used by a future developefherefore, validating ALL parts of tHd TP(Hypertext Transfer Protocpl
request is recommended.

7.14 Unquoted Search Path or Element [XZQ]

7.14.1 Description of application vulnerability

Strings injected into a software system that are not qubbtan permit an attacker to execute arbitrary
commands.

7.14.2 Cross reference

CWE:
428. Unguoted Search Path or Element
CERT C guililees: ENVOL

7.14.3 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injected istdtware systemBYy allowing
white-spaces in identifiers, an attacker could potentially exearbitrary commandsThis vulnerability covers
"C:\ Program Files " and spacén-searchpath issues.Theoretically this could apply to otheperating
systemsbesides Windows, especially those that make it easy for spaces to benaniidsor foldersnames

7.14.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the follownayg:w

1 Software should quote the input data that can be potentially executed on a system.
1 Use a programming language that enforces the quoting of strings.

7.15 Improperly Verified Signature [XZR]
7.15.1 Description of application vulnerability

The software does not verify, or improperly verifies, the cryptographic signature for data. By not adequately
performing the verification step, théata being received should not be trusted and may be corrupted or made
intentionally incorrect by an adversary.

© ISTIEC2012¢ All rights reserved 131

WG 23/N 027 Baseline Edition 2TR 24772

7.15.2 Cross reference

CWE:
347. Improperly Verified Signature

7.15.3 Mechanism of failure

Data is signed using techniques that assure thegrity of the data.There are two ways that the integrity can be
intentionally compromised. The exchange of the cryptol&gigs may have been compromised so that an
attacker could provide encrypted data that has been altered. Adtévely, the cryptologic verification could be
flawed so that the encryptioof the data is flawed which again allows an attacker to alter the data.

7.15.4 Avoiding the vulnerability or mitigating its effects
Software developers can awbthe vulnerability or mitigate its ill effects in the following ways:

I Use data signatures to the extent possible to help ensure trust in data.
1 Use builtin verifications for data.

7.15.5 Implications for standardization

In future standardization activés, the following items should be considered:

1 Language independent APIs for data signing should be defined, allowing each Programming Language to
define a binding.

7.16 Discrepancy Information Leak [XZL]

7.16.1 Description of application vulnerability

A discrepancy information leak is an information leak in which the product behaves differently, or sends different
responses, in a way tha¢veals securityelevant information about the state of the product, such as whether a
particular operation was successful or not.

7.16.2 Cross reference

CWE:
203. Discrepancy Information Leaks
204. Response Discrepancy Information Leak
206. Internal Beavioural Inconsistency Information Leak
207. External Behavorial Inconsistency Information Leak
208. Timing Discrepancy Information Leak

7.16.3 Mechanism of failure

A response discrepancy information leak occurs when the product sends different messdgestiresponse to
an attacker's request, in a way that allows the attacker to learn about the inner state of the prothetieaks
can be inadverten(bug) or intentional (design).

132 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

A behavioural discrepancy information leak occurs when the productisres indicate important differences

based on (1) the internal state of the product or (2) differences from other products in the same/Atiasks

such as OS fingerprinting rely heavily on both behavioural and response discrep&uaciaternal behsioural
inconsistency information leak is the situation where two separate operations in a product cause the product to
behave differently in a way that is observable to an attacker and reveals seigtant information about the
internal state of thegproduct, such as whether a particular operation was successful orAmexternal

behavioural inconsistency information leak is the situation where the software behaves differently than other
products like it, in a way that is observable to an attacket eeveals securityelevant information about which
product is beingised, or its operating state.

A timing discrepancy information leak occurs when two separate operations in a product require different
amounts of time to complete, in a way that is obgalle to an attacker and reveals secutigfevant information
about the state of the product, such as whether a particular operation was successful or not.

7.16.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the veitability or mitigate its ill effects in the following ways:

1 Compartmentalizehe system to have "safe" areas where trust boundaries can be unambiguously drawn.
1 Do not allow sensitive data to go outside of the trust boundary and always be careful wedadirig
with a compartment outside of the safe area

7.17 Sensitive Information Uncleared Before Use[XZK]

7.17.1 Description of application vulnerability

The software does not fully clear previously used information in a data structure, file, or other resource, before
making that resource available to another party that did not have access to the original ationm

7.17.2 Crossreference

CWE:
226. Sensitive Information Uncleared Before Release
CERT C guililees: MEMO3C

7.17.3 Mechanism of failure

This typically involves memory in which the new dataupies less memory thahe old data, which leaves
portions of the old data still available ("memory disclosirédowever, equivalent errors can occur in other
situations where the length of data is variable but the associated data structure iShwt.can overlap with
cryptograptlic errors and crosboundary cleansing infmation leaks.

Dynamic memory managers are not required to clear freed memory and generally do not because of the
additional runtime overheadFurthermore, dynamic memory managers are free to reallocate this saameory.

As a result, it is possible to accidentally leak sensitive information if it is not cleared before calling a function that
frees dynamic memoryProgrammers should not and c@rely on memory being cleared during allocation.

© ISTIEC2012¢ All rights reserved 133

WG 23/N 027 Baseline Edition 2TR 24772

7.17.4 Avoiding th e vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

9 Use library functions and or programming language feat(sash as destructors or finalization
procedures}hat provide automatic clearing of freed buffers or the functionality to clear buffers.

7.18 Path Traversal [EWR]

7.18.1 Description of application vulnerability

The softwae constructs a path that contains relative traversal sequence such as ".." or an absolute path sequence
such as "/path/here.” Attackers run the software in a particular directory so that the hard link or symbolic link
used by the software accesses a filat the attacker has under their control. In doing this, the attacker may be

able to escalate their privilege level to that of the running process.

7.18.2 Cross reference

CWE:
22. Path Traversal
24. Path Traversal.../filedir'
25. Path Traversal: !ffiledir'
Hec® t K ¢NI@SNEIEfY UKRANKDPOKTFALSYl YSQ
27. Path Traversal: 'dir/../../filename’
28. Path Traversal:\filename'
29. Path Traversak.\filename'
30. Path Traversakdir\..\filename'
31. Path Traversal: 'dir\filename'
32. Path Traversal:.' (Triple Dot)
33. Path Traversal: "...." (Multiple Dot)
34. Path Traversal: "..../I"
35. Path Traversal: ".../..II"
OTP® tIFGK ¢NFPSNAFTY Wkl o0a2tdziSkLI GKYFYSKKSNBQ
oy ® t I K \abddt&pathidErak 8 N8B Q
39. Path Traversal: 'C:dirname'
40. Pah Traversal\\UNGshardnama' (Windows UNC Share)
61. UNIX Symbolic Link (Symlink) Following
62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link
CERT C guiliiges: FIO0X

7.18.3 Mechanism of failure
There are two primary waythat an attacker can orchestrate an attack using path traversal. In the first, the

attacker alters the path being used by the software to point to a location that the attacker has control over.

134 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Alternatively, the attacker has no control over the pdtht can alter the directory structure so that the path
points to a location that the attacker do&ésvecontrol over.

For instance, a software system that accepts input in the form diléname’, . \filename’,

'[directory/../ffilename', 'directory/../../filename', '\ filename', \. \filename', \directory\. \filename',
‘directonA. \. \ilename', "...", "...." (multiple dots), "....//", or ".../.../I' without appropriate validation can allow an
attacker to traverse the file system to access an arbjtfde. Note that ".." is ignored if the current working
directory is the root directorySome of these input forms can be used to cause problems for systems that strip
out'.." from input in an attempt to remove relative path traversal.

There are seveta&ommon ways that an attacker can point a file access to a file the attacker has under their
control. A software system that accepts input in the form of '/absolute/pathname/here’ or

"\absolutd pathnamahere' without appropriate validation can also all@n attacker to traverse the file system

to unintended locations or access arbitrary fil&n attacker can inject a drive letter or Windows volume letter
(‘'C:dirname’) into a software system to potentially redirect access to an unintended locationitoargrfile. A
software system that accepts input in the form of a backslash absolute path without appropriate validation can
allow an attacker to traverse the file system to unintended locations or access arbitraryAtiesttacker can

inject a Windove UNQUniversal Naming Convention or Uniform Naming Convensibaje

(\\UNGsharaname") into a software system to potentially redirect access to an unintended location itnaayb
file. A software system that allows UNd¥mbolic links (symlinkas part of paths whether in internal code or
through user input can allow an attacker to spoof the symbolic link and traverse the file system to uathtend
locations or access arbitrary file$he symbolic link can permit an attacker to read/write/corrupt a file that they
originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerabilif
to different types of attacksFor example, an attacker can escalate their privileges if he/she can replace a file
used by a privileged program with a hard link to a sensitive file, for exaetplpasswd . When the process
opens the file, the attacker can assume thévpeges of that process.

A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through use
input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or
accesarbitrary files. The shortcut (file with thelnk extension) can permit an attacker to read/write a file that

they originally did not have permissions to access.

Failure for a system to check for hard links can result in vulnerability to different offmtacks. For example, an
attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to
sensitive file guch astc/passwd). When the process opens the file, the attacker can assume the privitdges

that process or possibly prevent a program from accurately processing data in a software system.

7.18.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the followayg:w

1 Assume all input is maliciousttackers can insert paths into input vectors and traverse the file system.

1 Use an ppropriate combination of blacksts and whitelists to ensure only valid and expected input is
processed by the system.

1 Asanitizingr SOKI yAayY OFy NBY2@3S OKI NI Ol SNA orbsand xploits. W ¢
An attacker can try to fool the sanitizing mechanism into "cleaning" data into a dangerousSoppose

© ISTIEC2012¢ All rights reserved 13E

WG 23/N 027 Baseline Edition 2TR 24772

GKS ddF 01 SNJ Ay 2 S Gay Ssenk.tivePite'y and thfedsanfiZihg mechadisin $eyhbvsShe 6
character resulting in the valid filename, "sensitiveFilé'the input data are now assumed to be safe,
then the file may be compromised.

1 Files can often be identified by other attributes in addittorthe file name, for example, by comparing

file ownership or creation time. Information regarding a file that has been created and closed can be

stored and then used later to validate the identity of the file when it is reoper@amparing multiple
attributes of the file improves the likelihood that the file is the expected one.

Follow the principle of least privilege when assigning access rights to files.

Denying access to a file can prevent an attacker from replacing that file with a link to avestilsiti

Ensure good compartmentalization in the system to provide protected areas that can be trusted.

When two or more users, or a group of users, have write permission to a directory, the potential for

sharing and deception is far greater than it isgbared access to a few fileShe vulnerabilities that

result from malicious restructuring via hard and symbolic links suggest that it is best to avoid shared
directories.

9 Securely creating temporary files in a shared directogyrigr-prone and @pendent on the version of the
runtime library used, the operating system, and the file syst&ode that works for a locally mounted
file system, for example, may be vulnerable when used with a remotely mounted file system.

1 The mitigation should be cented on converting relative paths into absolute paths and then verifying
that the resulting absolute path makes sense with respect to the configuration and rights or pensissi
This may include checkinghite-lists andblacklists, authorized super usestatus, access control listsy,
other fully trusted status

=A =4 =4 =2

7.19 Missing Required Cryptographic Step [XZY

7.19.1 Descripti on of application vulnerability

Cryptographic implementations should follow the algorithms that define them exaxttigrwise encryptiorcan
be faulty.

7.19.2 Cross reference

CWE:
325. Missing Required Cryptographic Step
327. Use of aBroken or Risky Cryptographic Algorithm

7.19.3 Mechanism of failure

Not following the algorithms that define cryptographic implementations exactly can lead to weak encryption.
This could be the result of many factors such as a programmer missing aereguiptographic step or using
weak randomization algorithms.

7.19.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Implement cryptographic algorithngrecisely.

136 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Use system functions and libraries rather than writing the function.

7.20 Insufficiently Protected Credentials [XYM]

7.20.1 Description of application vulnerability

This weakness occurs when the application transmits or stores authentication credentials and uses an insecure
method that is susceptible to unauthorized interception and/or retrieval.

7.20 .2 Cross reference

CWE:
256. Plaintext Storage of a Password
257. Storing Passwords in a Recoverable Format

7.20.3 Mechanism of failure

Storing a password in plaintext may result in a system comproniiaesword management issues occur when a
password is stored iplaintext in an application's properties or configuration fike programmer can attempt to
remedy the password management problem by obscuring the password with an encoding function, such as
Base64 encoding, but this effort does not adequately proteetghssword.Storing a plaintext password in a
configuration file allows anyone who can read the file access to the pasgwotected resource.Developers
sometimes believe that they cannot defend the application from someone who has access to tharatiofig

but this attitude makes an attacker's job easi&ood password management guidelines require that a password
never be stored in plaintext.

The storage of passwords in a recoverable format makes them subject to password reuse attacks by malicious
users. If a system administrator can recover the password directly or use a brute force search on the information
available to him, he can use the password on other accounts.

The use of recoverable passwords significantly increases the chance that pdssvilbbe used maliciouslyn
fact, it should be noted that recoverable encrypted passwords provide no significant benefit oveteglain
passwords since they are subject not only to reuse by malicious attackers but also by malicious insiders.

7.20.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

Avoid storing passwords in easily accessible locations.

Never store a password in plaintext.

Ensure thastrong, nonreversible encryption is used to protect stored passwords.

Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

= =4 =4 =

© ISTIEC2012¢ All rights reserved 137

WG 23/N 027 Baseline Edition 2TR 24772

7.21 Missing or Inconsistent Access Control [XZN]

7.21.1 Description of application vulnerability
The software does not perform access control checks in a consistent manner across all potential exethgion pa
7.21.2 Cross reference

CWE:
285. Missing or Inconsistent Access Control
352 CrossSite Request Forgery (C3RF
807. Reliance on Untrusted Inputs in a Security Decision
862. Missing Authorization
CERT C guililees: FIO0&C

7.21.3 Mechanism of failur e

For web applications, attackers can issue a request directly to a page (URL) that they may not be authorized to
access.If the access control policy is not consistently enforced on every page restricted to authorized users, then
an attacker could gaincaess to and possibly corrupt these resources

7.21.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 For web applications, make sure that the acosmstrol mechanism is enforced correctly at the server
side on every pageUsers should not be able to access any informagiomply by requesting direct access
to that page, if they do ndbtaveauthorization Ensure that all pages containing sensitivieimation are
not cached, and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access that page.

7.22 Authentication Logic Error [XZQ]

7.22.1 Description of application vulnerability
The software does not properly ensure that the user has proven their identity
7.22.2 Cross reference

CWE:
287. Improper Authentication
288. Authentication Bypass by Alternate Path/Channel
289. Authentication Bypass by Alternate Name
290. Authentication Bypass by Spoofing
294. Authentication Bypass by Captuisplay
301. Reflection Attack ian Authentication Protocol
302. Authentication Bypass by Assurdetnutable Data

138 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

303. Improper Implementation of Authentication Algorithm
305. Authentication Bypass by Primary Weakness

7.22.3 Mechanism of failure

There are many ways that an attacker cangmbially bypass the validation of a user. Some of the ways are
means of impersonating a legitimate user while others are means of bypassing the authentication mechanisms
that are in place. In either case, a user who should not have access to the sofygsem gains access.

Authentication bypass by alternate path or channel occurs when a product requires authentication, but the
product has an alternate path or channel that does not require authenticatdote that this is often seen in web
applicatiors that assume that access to a particlCB(CommonGateway Interfaceprogram can only be
obtained through a "front" screen, but this problem is not just in vegiplications

Authentication bypass by alternate name occurs when the software perfornieatication based on the name
of the resource being accessed, but there are multiple names for the resource, and not all names are checked.

Authentication bypass by captureplay occurs when it is possible for a malicious user to sniff network traffic an
bypass authentication by replaying it to the server in question to the same effect as the original message (or with
minor changes).Messages sent with a capturelay attack allow access to resources that are not otherwise
accessible without proper auéimtication. Capturereplay attacks are common and can be difficult to defeat

without cryptography.They are a subset of network injection attacks that @tyistening in on previously sent

valid commands, then changing them slightly if necessary asehbng the same commands to the serv8ince

any attacker who can listen to traffic can see sequence numbers, it is necessary to sign messages with some kin
of cryptography to ensure that sequence numbers are not simply doctored along with content.

Rdlection attacks capitalize on mutual authentication scherwesick the target into revealing the secret shared
between it and another valid usetn a basic mutuahuthentication scheme, a secret is known to both a valid
user and the server; this all@ithem to authenticate. In order that they may verify this shared secret without
sending it plainly over the wire, they utilize a DHfellmanstylescheme in which they each pick a value, then
request the hash of that valugs keyed by the shared secret. In a reflection attack, the attacker claims to be a
valid user and requests the hash of a random value from the se¥M&en the server returns this value and
requests its own value to be hashed, the attacker opens anothen@ction to the serverThis time, the hash
requested by the attacker is the value that the server requested in the first connedfithen the server returns
this hashed value, it is used in the first connection, authenticating the attacker succeasftiily impersonated
valid user.

Authentication bypass by assumé@dmutable data occurs when the authentication scheme or implementation
uses key data elements that are assumed to be immutable, but can be controlled or modified by the aftacker,
exampe, if a web application relies on a cookiuthenticated=1 "

Authentication logic error occurs when the authentication techniques do not follow the algorithms that define

them exactly and so authentication can be jeopardized. For instance, a malfornmagroper implementation of
an algorithm can weaken the authorization technique.

© ISTIEC2012¢ All rights reserved 13¢

WG 23/N 027 Baseline Edition 2TR 24772

An authentication bypass by primary weakness occurs when the authentication algorithm is sound, but the
implemented mechanism can be bypassed as the result of a separateessathat is primary to the
authentication error.

7.22.4 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Funnel all access through a single choke ptmirgimplify how users can access a resouleet every
access, perform a check to determine if the user has permissions to access the regougickmaking
decisions based on names of resourdes éxample files) if those resaees can have alternateames.

9 Canonicalize the name to match that of the file system's representation of the name. This can sometimes
be achieved with an available ARIr(examplejn Win32 theGetFullPathName function).

9 Utilize some sequence or time stamping functionalitynglevith a checksum that takes this into account
to ensure that mesages can be parsed only once.

1 Use different keys for the initiator and responder or of a different type of challenge for the initiator and
responder.

7.23 Hard -coded Password [XYP]

7.23.1 Description of application vulnerability

Hard coded passwords may compromise system security in a way that cannot be easily rertiddliedver a

good idea to hardcode a passwordNot only does hard coding a password allow all of the project's developers to
view the password, it also makes fixing the problem extremely diffi€dittce the code is in production, the
password cannot be changed without pateyithe software.If the account protected by the password is
compromised, the owners of the system will be forced to choose between security and availability.

7.23.2 Cross reference

CWE:
259. HardCoded Password
798. Use of Harecoded Credentials

7.23.3 Mechanism of failure

The use of a hardoded password has many negative implicatigtise most significant of these being a failure

of authentication measures under certain circumstanc®s many systems, a default administration account
exists which iset to a simple default password that is hamdded into the program or devicel his hardcoded
password is the same for each device or system of this type and often is not changed or disabled by enfl users.
a malicious user comes across a devicénisfkind, it is a simple matter of looking up the default password (which
is likely freely available and public on the Internet) and logging in with complete adnessstems that

authenticate with a baclend service, hardoded passwords within closedurce or drogin solution systems

require that the baclend service use a password that can be easily discovezkentside systems with hard

coded passwordpresenteven more of a threat, since the extraction of a password from a binary is exceedingly

140 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

simple. If hardcoded passwords are used, it is almost certain that unauthorized users will gain access through
the account in question.

7.23.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or naitéits ill effects in the following ways:

1 Rather than hard code a default username and password for first time logins, utilize a "first login" mode
that requires the user to enter a unique strong password.
1 For frontend to backend connections, there arélree solutions that may be used.
1. Use of generated passwords that are changed automatically and must be entered at given time
intervals by a system administratolhese passwords will be held in memory and onlydiel
for the time intervals.
2. The passwads used should be limited at the back end to only performing actions for the front
end, asopposed to having full access.
3. The messages sent should be tagged and checksummed with time sensitive values so as to
prevent replay style attacks.

8. New Vulnerabi lities

8.1 General

This claus@rovides languagindependent descriptions ofulnerabilitiesunder consideration for inclusion in the
next edition d this InternationalTechnical Reportlt is intended that revisions of these descriptions will be
incorparated into Clauses 6 and 7 of the next edition and that they will be treated in the langpagéic
annexes of that edition

8.2 Terminology

The following descriptions are written in a languagdependent manner except when specific languages are
usedin examples.

This clause will, in general, use the terminology that is most natural to the description of each individual
vulnerability. Hence the terminology may differ from description to description.

8.3 Concurrency z Activation [CGA]

8.3.1 Description of application vulnerability

A vulnerability can occur if an attempt has been made to activate a thread, but a programming error or the lack of
some resarce prevents the activation from completing@he activating thread may not have sufficient visibility or
awareness into the execution of the activated thread to determirieéfactivation has been successflihe
unrecognized activation failure can caua protocol failure in the activating thread or in other threads that rely

upon some action by the unactivated threadlhis may cause the other thread(s) to wait forever for some event
from the unactivated thread, or may cause an unhandled event orgiarein the other threads.

© ISTIEC2012¢ All rights reserved 141

WG 23/N 027 Baseline Edition 2TR 24772

8.3.2 Cross References

CWE:
364. Signal Handler Race Condition
Hoare A., Communicating Sequential Process&sentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference Maiddison Wesley Professial. 2003
UPPAAL, available from www.uppaal.com,
Larsen, Peterson, Wandyibdel Checking for Re@ime Systenis Proceedings of the flnternational
Conference on Fundamentals of Computation Theory, 1995
Ravenscar Tasking Profispecified in ISO/IEG®2:1995 Ada with TC 1:2001 and AM 1:2007

8.3.3 Mechanism of Failure

The context of the problem is that all threads except the main thread are activated by program steps of another
thread. The activation of each thread requires that dedicated resoureesrbated for that thread, such as a

thread stack, thread attributes, and communication porisinsufficient resources remain when the activation

attempt is made, the activation will faiSimilarly, if there is a program error in the activated threadf the

activated thread detects an error that causes it to terminate before beginning its main work, then it may appear

to have failed during activatioe KSy GKS | OGAGFGA2y Aa aaidl dA0esx NBazd
failure because foa lack of resources will not occurowever errors may occur for reasons other than resource
allocation and the results of an activation failure will be similar.

If the activating thread waits for each activated thread, then the activating threadkeily loe notified of

activation failures (if the particular construct or capability supports activation failure notification) and can be
programmed to take alternate actiorf notification occurs but alternate action is not programmed, then the
program wil execute erroneouslylf the activating thread is loosely coupled with the activated threads, and the
activating thread does not receive notification of a failure to activate, then it may wait indefinitely for the
unactivatedthreadto do its work, omay make wrong calculations because of incomplete data.

Activation of a single threaid a special case of activations of collections of threads simultanedLisiy.

paradigm (activation of collections of threads) can be used in languages that parabddisitions and create
anonymous threads to execute each slice of data. In such situations the activating thread is unlikely to individually
monitor each activated thread, so a failure of some to activate without explicit notification to the activating

thread can result in erroneous calculations.

If the rest of the application is unaware that an activation has failed, an incorrect execution of the application
algorithm may occur, such as deadlock of threads waiting for the activated thread, or posa#itygoarrors or
incorrect calculations.

8.3.4 Applicable language characteristics
This vulnerability is intended to be applicable to languages with the following characteristics:

1 All languages that permit concurrency within the language, or that use stifipcaries and operating
systems (such as POsPWindowg that provide concurrency control mechanisms. In essence all

142 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

traditional languages on fully functional operating systems (such as RO@&pfiant OS or Windows) can
access the Ofrovided mechanisms.

8.3.5 Avoiding the vulnerability or mitigatin g its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Always check return codes on operating system command njilmevided or language thread activation
mechanisms.

9 Handle errors and exceptions that occur on activation.

1 Create explicit synchronization protocols, to ensure that all activations have occurred before beginning
the parallel algorithm, if not providedylthe language or by the threading subsystem.

1 Use programming language provided features that couple the activated thread with the activating thread
to detect activation errors so that errors can be reported and recovery made.

9 Use static activation in pference to dynamic activation so that static analysis can guarantee correct
activation of threads.

8.3.6 Implications for standardization

In future standardization activities, the following items should be considered:

9 Consider including automatic synchipation of thread initiation as part of the concurrency model.
1 Provide a mechanism permitting query of activation success.

8.4 Concurrency z Directed termination [CGT]
8.4.1 Description of application vulnerability

This discussion is associated with the effects of unsuccessful or late termination of a tRoeamdiscussion of
premature termination, se&.6 Concurrency Premature TerminatiofCGS]

When a thread is working cooperatively with other threads and is directed to terminate, there are a number of
error situations that may occur that can leaml¢dompromise of the systenilhe termination directing thread may
request that one or more other threads abort or terminate, but the terminated thread(s) may not be in a state
such that the termination can occur, may ignore the direction, or may take tagabort or terminate tlan the
application can tolerate. In any case, on most systems, the thread will not terminate until it is next scheduled for
execution.

Unexpectedly delayed termination or the consumption of resources by the termination itselftaeg a failure
to meet deadlines, which, in turn, may lead to other failures.

8.4.2 Cross references

CWE:
364.Signal Handler Race Condition
Hoare C.A.R.Communicating Sequential Process&entice Hall, 1985
Holzmann G.,The SPIN Model CheckernEiples and Reference Mantiahddison Wesley Professional. 2003

© ISTIEC2012¢ All rights reserved 143

WG 23/N 027 Baseline Edition 2TR 24772

Larsen, Peterson, Wangvibdel Checking for Re@imeSystem, Proceedings of the 10th International
Conference on Fundamentals of Computation Theory, 1995
The Ravenscar Tasking Profipecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

8.4.3 Mechanism of failure

The abort of a thread may not happen if a thread is in an atleférred region and does not leave that region
(for whatever reason) after the abort directive is giveSimilarly, if abort is implemented as an event sentto a
thread and it is permitted to ignore such events, then the abort will not be obeyed.

The termination of a thread may not happen if the thread ignores the directive to terminate, or if thedtiaiiz
of the thread to be terminated does not complete.

If the termination directing thread continues on the false assumption that termination has completed, then any
sort of failure may occur

8.4.4 Applicable language characteristics
This vulnerabilitys intended to be applicable to languages with the following characteristics:

1 All languages that permit concurrency within the language, or support libraries and opergsitegs
(such as POSBémpliantor Windowsoperating systemisthat provide hooks foconcurrency control.

8.4.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate iefféicts in the following ways:

1 Use mechanisms of the language or system to determine that aborted theatiseads directed to
terminate have successfully terminate&uch mechanisms may include direct communication, runtime
level checks, explicit dependenglationships, or progress counters in shared communication code to
verify progress.

1 Provide mechamsims to detect and/or recover from failed termination.

9 Use static analysis techniques, such as CSP or rabdeking to show that thread termination is safely
handled.

1 Where appropriate, use scheduling models where threads never terminate.

8.4.6 Implicatio ns for standardization
In future standardization activities, the follamg items should be considered:

1 Provide a mechanism (either a language mechanism or a serviceocafihal either another threadr an
entity that can be queried by other threads wha thread terminates.

144 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

8.5 Concurrent Data Access [CGX]

8.5.1 Description of application vulnerability

Concurrency presents a significant challenge to progeamectly, and has a large number of possible ways for
failures to occur, quite a few known attack vectors, and many possible but undiscovered attack victors.
particular, data visible from more than one thread and not protected by a sequential aockssah be corrupted
by outof-order accessesThis, in turn, can lead to incorrect computation, premature program termination,
livelock, or system corruption

8.5.2 Cross references

CWE:
214. Information Exposure Through Process Environment
362 Concurent Execution using Shared Resource with Improper Synchronization ('Race Condition')
366. Race Condition Within a Thread
368. Context Switching Race Conditions
413 Improper Resource Locking
764. Multiple Locks of a Critical Resource
765. Multiple Unlocksof a Critical Resource
820. Missing Synchronization
821 Incorrect Synchronization

ISO IEC 86Frogramming Language Adaith TC 1:2001 and AM 1:2007.
Burns A. and Wellings A., Language VulnerabilifieS G Qa4 y 2G4 F2NBS{G / 2y OdzZNNBy Oeé >
C.A.RHoare, A model for communicating sequential processes, 1980

8.5.3 Mechanism of failure

Shared data can be monitored or updated directly by more than one thread, possibly circumventing any access
lock protocol in operationSome concurrent programs do hese access lock mechanisms but rely upon other
mechanisms such as timing or other program state to determine if shared data can be read or updated by a
thread. Regardless, direct visibility to shared data permits direct access to such data concuriebifsary

behaviour of any kind can result.

8.5.4 Applicable language characteristics

The vulnerability is intended to be applicable to

1 All languageshat provide concurrent execution and data sharing, whether as part of the language or by
use of undening operation system facilities, including facilities such as event handlers and interrupt
handlers.

8.5.5 Avoiding the vulnerability or mitigating its effect

Software developers can avoid the vulnerability or mitigate its effects in the following ways.

© ISTIEC2012¢ All rights reserved 14E

WG 23/N 027 Baseline Edition 2TR 24772

9 Place all data in memory regions accessible to only one thread at a time.

1 Use languages and those language features that provide a robust sequential protection paradigm to
protect against data corruptionFor example, Ada's protected objects and Javaiseeted class, provide
a safe paradigm when accessing objects that are exclusive to a single program.

1 Use operating system primitives, such as the POSIX locking primitives for synchronization to develop a
LINEG202f SlidA@ltSyid (2 @KKSRd ROI SRN2IWSKIIBREY ® y R

1 Where order of access is important for correctness, implement blocking and releasing paradigms, or
provide a test in the same protected region to check for correct order and generate errors if the test fails.

8.5.6 Implications for standardization

In future standardisation activities, the follamg items should be considered:

9 Languages that do not presently consider concurrency should corgiggting primitives that let
applications specify regions of sequential access to dsliechansms such as protected regiortépare
monitors or synchronous message passing between threads result in significantly fewer resource access
mistakes in a progra.

Provide the possibility of selecting alternative concurrency models that support static analysis, such as one of the
models that are known to have safe properti¢sor examples, se®]} [10],and [17].

8.6 Concurrency z Premature Termination [CGS]

8.6.1 Description of application vulnerability

When a thread is working cooperatively with other threads and terminates prematurelyifatever reason but
unknown to other threads, then the portion of the interaction protocol between the terméddhread and other
threads is damagedThis may result in:

1 indefinite blocking of the other threads as they wait for the terminated threatefinteraction protocol
was synchronous;

9 other threads receiving wrong or incomplete results if the interaction was asynchronous; or

1 deadlock if all other threads were depending upon the terminated thread for some aspect of their
computation before contiuing.

8.6.2 Cross references

CWE

364. Signal Handler Race Condition
Hoare C.A.R.Communicating Sequential Process&sentice Hall, 1985
Holzmann G.,The SPIN Model Checker: Principles and Reference Mahddison Wesley Professional. 2003
LarsenPeterson, Wang,Model Checking for Re@ime SystenisProceedings of the 10th International
Conference on Fundamentals of Computation Theory, 1995
The Ravenscar Tasking Profdpecified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

146 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

8.6.3 Mechanism of failure

If a thread terminates prematurely, threads that depend upon services from the terminated thread (in the sense
of waiting exclusively for a specific action before continuing) may wait forever since held locks may be left in a
locked stateresulting in waiting threads never being released or messages or events expected from the
terminated thread will never be received.

If a thread depends on the terminating thread and receives notification of termination, but the dependent thread
ignores thetermination notification, then a protocol failure will occur in the dependent thre&dr asynchronous
termination events, an unexpected event may cause immediate transfeordgfol from the executiorof the
dependent thread to another (possible unknoWwacation, resulting in corrupted objects or resources; or may
cause terminationin the master thread.

These conditions can result in

premature shutdown of the system;
corruption or arbitrary execution of code;
livelock;

deadlock;

=A =4 =4 =4

depending upon howther threads handle the termination errors.

If the thread termination is the result of an abort and the abort is immediate, there is nothing that can be done
within the aborted thread to prepare data for return to master tasks, except possibly the maresgehread (or
operating system) notifyingther threads that the event occurredf the aborted thread was holding resources or
performing active updates when aborted, then any direct access by other threads to such locks, resources or
memory may resulin corruption of those threads or of the complete system, up to and including arbitrary code
execution.

8.6.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

1 Languageshiat permit concurrency within the language, or support libraries and operating systems (such
as POSEompliant or Windows operating systems) that provide hooks for concurrency control.

8.6.5 Avoiding the vulnerability or mitigating its effect
Software deelopers can avoid the vulnerability or mitigate its ill effects in the following ways:

1 Use concurrency mechanisms that are known to be robust.

" Thismay cause the failure to propagate to other threads.

© ISTIEC2012¢ All rights reserved 147

WG 23/N 027 Baseline Edition 2TR 24772

1 At appropriate times use mechanisms of the language or system to determine that necessary threads are
still operating. Such mechanisms may be direct communication, runtievel checks, explicit
dependency relationships, or progress counters in shared communication code to verify progress.

1 Handle events and exceptions from termination.

1 Provide manager threads toonitor progress and to collect and recover from improper terminations or
abortions of threads.

1 Use static analysis techniques, such as model checking, to show that thread termination is safely handled.

8.6.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Provide a mechanism to preclude the abort of a thread from another thread during critical pieces of code.
Some languages (for examphgja or Reallime Javpprovice a notion of an abortleferred region.

1 Provide a mechanism to signal another thread (or an entity that can be queried by other threads) when a
thread terminates.

1 Provide a mechanism that, within critical pieces of code, defers the delivery of asynchexuations
or asynchronous transfers of control.

8.7 Protocol Lock Errors [CGM]

8.7.1 Description of application vulnerability
Concurrent programs use protocols ¢ontrol

The way that threads interact with each other,

How to schedule the relative rates of progress,

How threads participate in the generation and consumption of data
The allocation of threads to the various rales

The preservation of data integritand

The detection and correction of incorrect operations.

=A =4 =4 =4 =4 =4

When protocols ar@ot correct, or when a vulnerability lets an exploit destroy a protocol, then the concurrent
portions fail to work ceoperatively and the system behaves incorrectly.

This vulerability is related to [CGX] Shared Data Access and Corruption, which discusses situations where the
protocol to control access to resources is explicitly visible to the participating partners and makes use of visible
shared resources. In comparison, thignerability discusses scenarios where such resources are protected by
protocols, and considers ways that the protocol itself may be misused.

8.7.2 Cross references
CWE
413 Improper Resource Locking

414 Missing Lock Check
609. Double Checked Locking

148 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

667. Improper Locking
821 Incorrect Synchronization
833 Deadlock
C.A.RHoare, A model for communicating sequential processes, 1980

Larsen, K.G., Petterssen, P, Wang, Y, UPPAAL in a nutshell, 1997
8.7.3 Mechanism of failure

Threads use locks and protdsdo schedule their work, control access to resources, exchange data, and to effect
communication with each otherProtocol errors occur when the expected rules forageration are not

followed, or when the order of lock acquisitions and release catlsethreads to quit working togetherThese

errors can be as a result of:

deliberate termination of one or more threagsrticipating in the protocol,
disruption of messages or intez@ons in the protocol,

errors or exceptions raised in threadsrpeipating in the protocol, or

errors in the programming of one or more threads participating in the protocol.

=A =4 =4 =

In such situations, there are a number of possible consequences

1 deadlock where every thread eventually quits computing as it whitsesults from another threadjo
further progress in the system is made,

1 livelock where one or more threads commandeer all of the computing resource and effectively lock out
the other portions, no further progress in the system is made

i data may be corrupted or lack currency (timeliness), or

9 one or more threads detect an error associated with the protocol and terminate prematurely, leaving the
protocol in an unrecoverable state.

The potential damage from attacks on protocols dependsnuip@ nature of the system using the protocol and

the protocol itself. Selfcontained systems using private protocols can be disrupted, but it is highly unlikely that
predetermined executions (including arbitrary code execution) can be obtai@edhe dgher extreme threads
communicating openly between systems using wieltumented protocols can be disrupted in any arbitrary

fashion with effects such as the destruction of system resources (such as a database), the generation of wrong b
plausible datapr arbitrary code executionln fact, many documented cliessierver based attacks consist of some
abuse of a protocol such as SQL transactions.

8.7.4 Applicable language characteristics
The vulnerability is intended to be applicable to languages wittfahewing characteristics:

Languages that support concurrency directly.

Languages that permit calls to operating system primitives to obtain concurrent behaviours.
Languages that permit 10 or other interaction with external devices or services.
Languagethat support interrupt handling directly or indirectly (via the operating system).

= =4 =4 =

© ISTIEC2012¢ All rights reserved 14¢

WG 23/N 027 Baseline Edition 2TR 24772

8.7.5 Avoiding the vulnerability or mitigating its effect
Software developers can avoid the vulnerability or mitigate its effects in the following ways

1 Consider the use afynchronous protocols, such as definedd§P, Petri Nets or by thela rendezvous
protocol since these can be statically shown to be free from protocol errors such as deadlock and livelock.

1 Consider the use of simple asynchronous protocols that exclysige concurrent thrads and protected
regions such as defined by the Ravenscar TasRinodjle, whichcan also be shown statically to have
correct behaviour using model checking technologies, as show#ghy [

1 When static verification is not possibl@ansider the use of detection and recovery techniques using
simple mechanisms and protocols that can be verified independently from the main concurrency
environment. Watchdog timers coupled with checkpoints constitute one such approach.

9 Use higHevel synchonization paradigms, for example monitorendezvous, or critical regions.

1 Design the architecture of the application to ensure that some threads or tasks never block, and can be
available for detection of concurrency error conditions and for recovetiaiion.

1 Use model checkers to model the concurrent behaviour of the complete application and check for states
where progress failsPlace all locks and releases in the same subprograms, and ensure that the order of
calls and releases of multiple lock® @orrect.

8.7.6 Implications for standardization
In future standardization activities, the following items should be considered:

1 Raise the level of abstraction for concurrency services.
1 Provide services or mechanisms to detect and recover from protocklifailures.
9 Design concurrency services that help to avoid typical failures such as deadlock.

8.8 Inadequately Secure Communication of Shared Resources [CGY]

8.8.1 Description of application vulnerability

A resource that is directly visible from more than one process (at the same approximate time) and is not
protected by access locks can be higttlor used to corrupt, control or change the behaviour of other processes

in the system.Many vulnerabilities that are associated with concurrent access to files, shared memory or shared
network resources fall under this vulnerability, including resousrE®ssed via stateless protocols such as HTTP
and remote file protocols.

8.8.2 Cross references

CWE:
15. External Control of System or Configuration Setting
311. Missing Encryption of Sensitive Data
642 External Control of Critical State Data
Burns Aand Wellings A., Language VulnerabilitigsS G Q& y 24 F2NBS{G [/ 2y OdzZNNBy Oeé =

150 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

8.8.3 Mechanism of failure

Any time that a shared resource is open to general inspection, the resource can be monitored by a foreign proce:
to determine usage patt®s, timing patterns, and access patterns to determine ways that a planned attack can
succeed. Such monitoring could be, but is not limited to:

1 Reading resource values to obtain information of value to the applications.

9 Monitoring access time and acaethread to determine when a resource can be accessed undetected by
other threads (for example, Tirraf-CheckTime-Of-Use attacks rely upon a d&=iminable amount of time
between the check on a resource and the use of the resource when the resource contwtiied to
bypass the check).

1 Monitoring a resource and modification patterns to help determine the protocols in use.

1 Monitoring access times and patterns to determine quiet times in the access to a resource that could be
used to find successful attackators.

This monitoring can then be used to construct a successful attack, usually in a later attack.
Any time that a resource is open to general update, the attacker can plan an attack by performing experiments to

9 Discover how changes affect pattarofusage, timing, and access
9 Discover how application threads detect and respond to forged values.

Any time that a shared resource is open to shared update by a thread, the resource can be changed in ways to
further an attack once it is initiated-or example, in awell-knownattack, a process monitors a certain change to
a known file and then immediately replaces a virus free file with an infected file to bypass virus checking software

With careful planning, similar scenarios can result in the foreigngs® determining a weakness of the attacked
process leading to an exploit consisting of anything up to and including arbitrary code execution.

8.8.4 Avoiding the vulnerability or mitigating its effect

Software developers can avoid the vulnerability origate its effects in the following ways.

1 Place all shared resources in memory regions accessible to only one process at a time.

9 Protect resources that must be visible with encryption or with checksums to detect unauthorized
modifications.

9 Protect access tehared resources using permissions, access control, or obfuscation.

Have and enforce clear rules with respect to permissions to change shared resources.

9 Detect attempts to alter shared resources and take immediate action.

=

8 Such monitoring is almost always possible by a process executing with system privilege, but even small slips in actseaadontro
permissions let such resources be seen from other (non system freeBsses. Even the existence of the resource, its size, or its access
RIFIiSakiAYySa yR KA&Gl2NE 04dzOK +a aflad O00SaasSR GaySeo Oly 3AA

© ISTIEC2012¢ All rights reserved 151

WG 23/N 027 Baseline Edition 2TR 24772

Annex A
(informative)
Vulnerabi lity Taxonomy and List

A.1 General

This Technical Report is a catalog that will continue to evolve. For that reason, a scheme that is distinct-from sub
clause numbering has been adopted to identify the vulnerability descriptions. Each descriptiorehasbrgned

an arbitrarily generated, unique threletter code. These codes should be used in preference tckuse

numbers when referencing descriptions because they will not change as additional descriptions are added to
future editions of this Techoal Report. However, it is recognized that readers may need assistance in locating
descriptions of interest.

This annex provides a taxonomical hierarchy of vulnéitads, which users may find to belpful in locating
descriptions of interestA.2 isa taxonomy of the programming language vulnerabilities described in Chearsed
A.3is a taxonomy of the application vulnerabilities described in ClZuge4 lists the vulnerabilities in the
alphabetical order of their thre¢etter codes and provides@ossreference to the relevant sublause.

A.2 Outline of Programming Language Vulnerabilities

A.21. Types
A.21.1. Representation
A.21.1.1. [IHN] Type System
A.2.1.1.2. [STR] Bit Representations
A.21.2. Floatingpoint
A.2.1.2.1 [PLF] Floatingoint Arithmetic
A.21.3. Enumerated Types
A.2.1.3.1. [CCB] Enumerator Issues
A.21.4. Integers
A.2.1.41. [A.C] Numeric Conversion Errors
A.21.5. Characters and strings
A.21.5.1 [CIMJString Termination
A.21.6. Arrays
A.2.1.61. HCB Buffer Boundary Viation (Buffer Overflow)
A.2.1.62. [XYZ] Unchecked Array Indexing
A.2.1.63. [XYW] Unchecked Array Copying
A.21.7. Pointers
A.2.1.71. [HFC] Pointer Casting and Pointer Type Changes
A.2.1.7.2. [RVG] Pointer Arithmetic
A.2.1.73. [XYH] Null Pointer Dészence
A.2.1.74. [XYK] Dangling Reference to Heap
A.22. TypeConversions/Limits
A.22.1. [FIF] Arithmetic Wrapround Error
A.2.2.1 [PIK] Using Shift Operations for Multiplication and Division
A.22.2.[XZI] Sign Extension Error
A.23. Declarationgnd Definitions
A.23.1. [NAI] Choice of Clear Names
A.2.3.2. [WXQ] Dead store

152 © ISTIEC2012 ¢ All rights reserve

Baseline Editior2 TR 24772

A.23.3. [YZS] Unused Variable
A.23.4. [YOW] Identifier Name Reuse
A.23.5. [BJL] Namespace Issues
A.23.6. [LAVY Initialization of Variables
A.24. Operators/Expressions
A2.4.1. [JCW] OperatorrBcedence/Order of Evaluation
A.24.2. [SAM] Sideffects and Order of Evaluation
A.24.3. [KQ\] Likely Incorrect Expression
A.24.4. [XYQ] Dead and Deactivated Code
A.25. Control Flow
A.25.1. Conditional Statements
A.2.51.1. [CLLSwitch Statements and Static Analysis
A.2.51.2. [EQ] Demarcation of Control Flow
A.25.2. Loops
A.2.52.1. [TEX] Loop Control Variables
A.2.5.2.2. [XZH] OHy-one Error
A.25.3. Subroutines (Functions, Procedures, Subprograms)
A.2.53.1.[EWD] Struaired Programming
A.2.53.2. [CSJ] Passing Parameters and Return Values
A.2.53.3. [DCM] Dangling References to Stack Frames
A.2.53.4. [OTRBubprogram Signature Mismatch
A.2.5.3.5. [GDL] Recursion
A.2.536. [OYBIgnoredError Status and Unhandleadeptions
A.25.4. Termination Strategy
A.2.54.1. [REU] Termination Strategy
A.26. MemoryModels
A.2.61. [AMV] Typédbreaking Reinterpretation of Data
A.2.62. [XYL] Memory Leak
A.27. Templates/Generics
A.27.1. [SYM] Templates and Generics
A.27.2. [RP] Inheritance
A.28. Libraries
A.2.8.1 [LRM] Extra Intrinsics
A.28.2 [TRJ] Argument Passing to Library Functions
A.2.8.3. [DJS] Intdanguage Calling
A.28.4. [NYY] Dynamicatinked Code and Sethodifying Code
A.28.5. [NSQ)] Library Signature
A.28.6. [HIW] Unanticipated Exceptions from Library Routines
A.29. Macros
A.29.1. [NMP] Preprocessor Directives
A.2.10. Compile/Run Time
A.2.10.1 [MXB] Provision of Inherently Unsafe Operations
A.2.10.2 [SKISuppression of Languadefined Rurlime Checkig

A.211.Language Specification Issues
A.211.1. [BRS] Obscure Language Features
A.211.2. [BQF] Unspecified Behaviour
A.211.3. [EWF] Undefined Behaviour
A.211.4 [FAB]mplementationdefined Behaviour
A.211.5 [MEM] Deprecated Language Features

© ISTIEC2012 ¢ All rights reserved

WG 23/N 027

WG 23/N 027 Baseline Edition 2TR 24772

A.3 Outline of Application Vulnerabilities

A.3.1 Desigrnissues
A.3.1.1 [BVQ] Unspecified Functionality
A.3.1.2 [KLK] Distinguished Values in Data Types
A.32. Environment
A.32.1. [XYN] Adherence to Least Privilege
A.32.2. [XYQO] Privilege Sandbox Issues
A3.2.3. [XYS] Executing or Loading Untrusted Code
A.3.3 Resource Management
A.3.31. Memory Management
A.3.31.1. [XZX] Memory Locking
A.3.31.2. [XZP] Resource Exhaustion
A.3.32. Input
A.3.3.2.1[CBF] Unrestricted filepload
A.3.3.2.2. [HTS] Resouncames
A.3.32.3. [RST] Injection
A.3.324. [XYT] Crossite Scripting
A.3.3.25. [XZQ] Unquoted Search Path or Element
A.3.3.2.6 [XZR] Improperly Verified Signature
A.3.32.7. [XZL] Discrepancy Information Leak
A.3.33. Output
A.3.33.1. [XZK] Sensitivaformation Uncleared Before Use
A.3.34. Files
A.33.4.1. [EWR] Path Traversal
A.3.4. Concurrency
A.3.4.1 [CGA] Concurrengyctivation
A.3.4.2[CGT] ConcurrenayDirected termination
A.3.4.3[CGS] ConcurrengyPremature Termination
A.3.4.4|CGX] Conatent Data Access
A.3.4.59[CGY] Inadequately Secure Communication of Shared Resources
A.3.4.6 [CGMProtocal Lock Errors
A.4.4 Flaws in Security Functions
A.4.41. [XZS] Missing Required Cryptographic Step
A.4.42. Authentication
A.4.42.1. [XYM] Insuffiently Protected Credentials
A.4.42.2. [XZN] Missing or Inconsistent Access Control
A.4.42.3. [XZO] Authentication Logic Error
A.4.42.4. [XYP] Hardoded Password

A.4 Vulnerability List

Code Vulnerability Name Subclause Page
[AMV] | Type - breaking Rein terpretation of Data 6.40 88

[BJIL] Namespace Issues 6.23 59

[BQF] | Unspecified Behaviour 6.54 108
[BRS] | Obscure Language Features 6.53 107
[BVQ] | Unspecified Functionality 7.3 115
[CBF] | Unrestricted File Upload 7.10 123

154 © ISTIEC2012 ¢ All rights reserve

Baseline Editio2 TR 24772 WG 23/N 0427
[CCB] | Enumerator Issues 6.6 34
[CGA] | Concurrency - Activat ion 8.3 141
[CGM] | Protocol Lock Errors 8.7 148
[CGS] | Concurrency - Premature Termination 8.6 146
[CGT] | Concurrency - Directed termination 8.4 143
[CGX] | Concurrent Data Access 8.5 145
[CGY] | Inadequately Secure Communication of Shared Resources 8.8 150
[CIM] | String Termination 6.8 38
[CLL] | Switch Statements and Static Analysis 6.29 70
[CSJ] | Passing Parameters and Return Values 6.34 77
[DCM] | Dangling References to Stack Frames 6.35 79
[DJS] | Inter -language Calling 6.46 97
[EQJ] | Demarcation of Control Flow 6.30 72
[EWD] | Structured Programming 6.33 76
[EWF] | Undefined Behaviour 6.55 110
[EWR] | Path Traversal 7.18 134
[FAB] | Implementation - defined Behaviour 6.56 111
[FIF] Arithmetic Wrap - around Error 6.16 50
[F LC] | Numeric Conversion Errors 6.7 36
[GDL] | Recursion 6.37 83
[HCB] | Buffer Boundary Violation (Buffer Overflow) 6.9 39
[HFC] | Pointer Casting and Pointer Type Changes 6.12 44
[HIW] | Unanticipated Exceptions from Library Routines 6.49 102
[HTS] | Resource Names 7.11 124
[IHN] | Type System 6.3 28
[JCW] | Operator Precedence/Order of Evaluation 6.25 63
[KLK] | Distinguished Values in Data Types 7.4 116
[KOA] | Likely Incorrect Expression 6.27 66
[LAV] | Initialization of Variables 6.24 61
[LRM] | Extra Intrinsics 6.44 95
[MEM] | Deprecated Language Features 6.57 113
[MXB] | Suppression of Language - defined R un- time Checking 6.51 105
[NAI] Choice of Clear Names 6.19 53
[NMP] | Pre - processor Directives 6.50 103
[NSQ] | Library Signature 6.48 100
[NYY] | Dynamically - linked Code and Self - modifying Code 6.47 99
[OTR] | Subprogram Signature Mismatch 6.36 81
[OYB] | Ignored Error Status and Unhandled Exceptions 6.38 84
[PIK] Using Shift Operations for Multiplication and Division 6.17 51
[PLF] | Floating - point Arithmetic 6.5 32
[REU] | Termination Strategy 6.39 86
[RIP] Inheritance 6.43 94
[RST] | Injection 7.12 125
[RVG] | Pointer Arithmetic 6.13 45
[SAM] | Side - effects and Order of Evaluation 6.26 65
[SKL] | Provision of Inherently Unsafe Operations 6.52 106
[STR] | Bit Representations 6.4 30
[SYM] | Templates and Generics 6.42 92
[TEX] | Loop Control Variables 6.31 73
[TRJ] | Argument Passing to Library Functions 6.45 96
[WXQ)] | Dead Store 6.20 55
[XYH] | Null Pointer Dereference 6.14 46
[XYK] | Dangling Reference to Heap 6.15 47
[XYL] | Memory Leak 6.41 90
© ISTIEC2012¢ All rights reserved 15E

WG 23/N 027 Baseline Edition 2TR 24772

[XYM] | Insufficiently Protected Credentials 7.20 137
[XYN] | Adherence to Least Privilege 7.5 117
[XYQ] | Privilege Sandbox Issues 7.6 118
[XYP] | Hard - coded Password 7.23 140
[XYQ] | Dead and Deactivated Code 6.28 68
[XYS] | Executing or Loading Untrusted Code 7.7 119
[XYT] | Cross - site Scripting 7.13 128
[XYW] | Unchecked Array Copying 6.11 43
[XYZ] | Unchecked Array Indexing 6.10 41
[XZH] | Off - by- one Error 6.32 74
[XZI] Sign Extension Error 6.18 52
[XZK] | Sensitive Information Uncleared Before Use 7.17 133
[XZL] | Discrepancy Information Leak 7.16 132
[XZN] | Missing or Inconsistent Access Control 7.21 138
[XZO] | Authentication Logic Error 7.22 138
[XZP] | Resource Exhaustion 7.9 121
[XZQ] | Unquoted Search Path or Element 7.14 131
[XZR] | Improperly Verified Signature 7.15 131
[XZS] | Mis sing Required Cryptographic Step 7.19 136
[XZX] | Memory Locking 7.8 120
[YOW] | Identifier Name Reuse 6.22 57
[YZS] | Unused Variable 6.21 56

156 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Annex B
(informative)
Language Specific Vulnerability Template

Each languagspecific annex should have the following heading information and initial sections:

Annex <language>
(Informative)
Vulnerability descriptions for language <languag

<language>.1 Identification of standards

[This sukclause should list the relevant language standards and other documents that describe the langua
treated in the annex. It need not be simply a list of standattishould do whatever is required tedcribe the
language that is the baseline.]

<language>.2 General terminology and concepts

[This sukclause should provide an overview of general terminology and concepts that are utilized througho
annex.]

Every vulnerability description of Clausef@he main document should be addressed in the annex in the same
order even if there is simply a notation that it is not relevant to the language in quediiaah vulnerability
description should have the following format:

<language>.<x> <Vulnerabilityame> [<3 letter tag>]

<language>.<x>.0 Status, history, and bibliography

[Revision history. This clause will eventually be removed.]

<language>.<x>.1 Applicability to language

[This section describes what the language does or does not do in order twidedhe vulnerability.]
<language>.<x>.2 Guidance to language users

[This section describes what the programmer or user should do regarding the vulnerability.]

In those cases where a vulnerability is simply not applicable to the language, the followirag §hould be used
instead:

<language>.<x> <Vulnerability Name> [<3 letter tag>]

This vulnerability is not applicable to <language>.

© ISTIEC2012¢ All rights reserved 157

WG 23/N 027 Baseline Edition 2TR 24772

Following the final vulnerability description, there should be a singlectailse as follows:

<language>.<x> Implicaties for standardization

[This section provides the opportunity to discuss changes anticipated for future versions of the language
specification.]

158 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Annex C
(informative)
Vulnerability descriptions for the language Ada

C.1 Identification of standards and a ssociated documentation

ISO/IEC 8652:199Bformation Technology Programming Language#\da.

ISO/IEC 8652:1995/COR.1:20Té&chnical Corrigendum to Information Technolqddrogramming Languages
Ada.

ISTIEC 8652:1995/AMD.1:200Amendment to Information TechnologyProgramming Language#da.

ISO/IEC TR 15942:20@uidance for the Use of Ada in Higtebrity Systems.

ISO/IEC TR 24718:20@5uide for the use of the Ada Ravenscar Profile in high integrity systems.

Lecture Notes on Computer Science 5020¢4 ! Rl Hnnp wlk GA2y+FESY ¢KS [| y3dz
Barnes, Springer, 2008.

Ada 95 Quality and Style Guj&PE106L:CMC, version 02.01.01. Herndon, Virginia: Software Productivity
Consortium, 1992.

Ada Language Reference Manudie consolidated Ada Reference Manual, consisting of the international
standard (ISO/IEC 8652:199Bi)formation Technology Programming LanguagesAda, as updated by changes
from Technical Corrigendum(ISO/IEC 8652:1995:TC1:2000), and Amendment 1 (ISO/IEC 8526:AMD1:2007).
IEEE 752008, IEEE Standard for Binary Floating Point Arithpri&tieE, 2008.

IEEE 854987, IEEE Standard for Raltidependent FloatindPoint Arithmetic IEEE, 1987

C.2 General terminology and concepts

Abnormal Representatiomhe representation of an object iscomplete or does not represe any valid value of
0KS 202S00Qa adzodeLlSo

Access object An object of an access type.

Accesdo-Subprogram A pointer to a subprogram (fution or procedure).

Access type The pe for objects that designate (point to) other objects.
Access valueThe value of an access typevalue that is either null or designates (points at) another object.
Allocator. The Ada term for the constructdhallocates storage from the heap or from a storage pool.

AtomicandVolatile Ada can force every access to an object to be an indivisible access to the entity in memory
instead of possibly partial, repeated manipulation of a local or register copyldnti#ese properties are specified
by pragmas.

Attribute: An Attribute is a characteristic of a declaration that can be queried by special syntax to return a value
corresponding to the requested attribute.

© ISTIEC2012¢ All rights reserved 15¢

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22983
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35451
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45001
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29575
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38828
http://www.adaic.com/standards/ada05.html

WG 23/N 027 Baseline Edition 2TR 24772

Bit Ordering Ada allows use of the attribut®it Orderof a type to query or specify its bit ordering representation
(High_Order_FirsandLow_Order_First The default value is implementation defined and available at
System.Bit_Order

Bounded Errar An aror that need not be detected either prior to aluring run time, but if not detected, then
the range of possible effects shall be bounded.

Case mtement A case statement provides multiple paths of execution dependent upon the value of the case
expression. Only one of alternative sequences of stateseill be selected.

Case expressionThe case expression of a case statement is a discrete type.

Case choicesThe choices of a case statement must be of the same type as the type of the expression in the case
statement. All possible values of theseaexpression must be covered by the case choices.

Compilation mit: The smallest Ada syntactic construct that may be submitted to the compiler. For typical file
based implementations, the content of a single Ada source file is usually a single compifatio

Configuration pragmaA directive to the compiler that is used to selpattition-wide or systerrwide optiors.
Thepragma applies to alcompilationunits appearing in the compilation, unless there are none, in which case it
applies to all futurecompilationunits compiled into the same environment.

Controlled type A type descended from the languadefined typeControlledor Limited_Controlled A

controlled type is a specialized type in Ada where an implementer can tightly control thezaticaii

assignment, and finalization of objects of the type. This supports techniques such as reference counting, hidden
levels of indirection, reliable resource allocati@md so on

Dead store An assignment to a variable that is not used in subsequstiuctions. A variable that is declared but
neither read nor written to in the program is an unused variable.

Default expressionan expression of the formal object type that may be used to initialize the formal object if an
actual object is not provided

Discrete type An integer type or an enumeration type.

Discriminant A parameter for a composite type. It can control, for example, the bounds of a component of the
type if the component is an array. A discriminant for a task type can be used togtade @ task of the type
upon creation.

Endiannessthe programmer may specify the endianness of the representation through the useragma.

Enumeration Representation Claugeenumeration representation clause may be used to specify the internal
codes for enumeration literals.

Enumeration TypeAn enumeration type is a discrete type defined by an enumeration of its values, which may be
named by identifiers or character literals. In Ada, the typaaracteandBooleanare enumeration typeslrhe

defining identifiers and defining character literals of an enumeration type must be distimetpredefined order
relations between values of the enumeration type follow the order of corresponding position numbers.

160 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Erroneous executianThe unpredictable redtiarising from an error that inot bounded by the language, but
that, like abounded error need not be detected by the implementation either prior to or during run time.

Exception Represents a kind of exceptional situation. There is a set of prededxeeptions in Ada ipackage
Standard: Constraint_Error, Program_Error, Storage_EamnoiTasking_Erroyone of them is raised when a
languagedefined check fails.

Expanded nameA variable V inside subprogram S in package P can be named V, orlie ®ame V is called
the direct namewhile the name P.S.V is called twgpanded name

Explicit ConversianThe Ada term explicit conversion is equivalent to the term cast in Section 6.3.3.

Fixedpoint types Realvalued types with a specified error bodifcalled the 'delta’ of the type) that provide
arithmetic operations carried out with fixed precision (rather than the relative precision of flopting types).

Generidformal subprogramA parameter to a generic package used to specify a subprograperator.

Hiding A declaration can bkidden either from direct visibility, or from all visibility, within certain parts of its
scope. Wherdnidden from all visibilityit is not visible at all (neither usingdaect_namenor aselector_name
Wherehidden from direct visibilityonly direct visibility is lost; visibility usingelector_names still possible.

Homograph Two declarations areomographsf they have the same name, and do not overload each other
according to the rules of the language.

Identifier: Identifier is the Ada term that corresponds to the term name.

Idempotent behaviar: The property of an operation that has the same effect whether applied just once or
multiple times. An example would be an operation that rounded a number upgmearest even integer greater
than or equal to its starting value.

Implementation defined Aspects of semantics of the language specify a set of possible effects; the
implementation may choose to implement any effect in the set. Implementations apa@ned to document their
behaviour in implementatiofefined situations.

Implicit ConversionThe Ada term implicit conversion is equivalent to the term coercion.

Ada uses a strong type system based on name equivalence rules. It distinguishes typesmisloidi
statically checkable equivalence rules, and subtypes, which associate dynamic properties witfotypes,
example index ranges for array subtypes or value ranges for numeric subtypes. Subtypes are not types
and their values are implicitly convertibto all other subtypes of the same type. All subtype Byme-
conversions ensure by static or dynamic checks that the converted value is within the value range of the
target type or subtype. If a static check fails, then the program is rejectedebgampiler. If a dynamic

check fails, then an exceptidonstraint_Errois raised.

To effect a transition of a value from one type to another, three kinds of conversions can be applied in
Ada:

a) Implicit conversionsthere are few situations in Ada thallow for implicit conversions. An
example is the assignment of a value of a type to a polymorphic variable of an encompassing

© ISTIEC2012¢ All rights reserved 161

WG 23/N 027 Baseline Edition 2TR 24772

class. In all cases where implicit conversions are permitted, neither static nor dynamic type safety
or application type semaits (see below) are endangered by the conversion.

b) Explicit conversionsarious explicit conversions between related types are allowed in Ada. All
such conversions ensure by static or dynamic rules that the converted value is a valid value of the
targettype. Violations of subtype properties cause an exception to be raised by the conversion.

c) Unchecked conversion€onversions that are obtained by instantiating the generic subprogram
Unchecked_Conversiare unsafe and enable all vulnerabilities mentd in Section 6.3 as the
result of a breach in a strong type systddnchecked_Conversida occasionally needed to
interface with typeless data structurespr example hardware registers.

A guiding principle in Ada is that, with the exception of uanstances ofJnchecked_Conversiomo
undefined semantics can arise from conversions and the converted value is a valid value of the target

type.

Modular type A modular type is an integer type with values in taage 0. modulus 1. The modulus of a
modular type can be up to 2**N for it word architectures. A modular type has wrappund semantics for
arithmetic operations, biwise "and" and "or" operations, and arithmetic and logical shift operations.

Obsolescent Feature#da has a number of feates that have been declared to be obsolescent; this is equivalent
to the term deprecated. These are documented in Annex J of the Ada Reference Manual.

Operational and Representation AttributeBhe values of certain implementati@iependent characteristicsan
be obtained by querying the applicable attributes. Some attributes can be specified by the user; for example:

1 X'Alignment allows the alignment of objects on a storage unit boundary at an integral multiple of a
specified value.

1 X'Size denotes the siz in bits of the representation of the object.

1 X'Component_Sizedenotes the size in bits of components of the array type X.

Overriding Indicatord L F 'y 2LISNI GA2Y A& YIEINJSR Fa a2O0SNNARAY 3¢
operation is incorectly named or the parameters are not as defined in the parent. Likewise, if an operation is
YEN]J SR Fa ay20 208SNNARAYy3IeES GKSYy GKS O2YLIAESNI gAff
types.

Partition A partition is a part of a progm. Each partition consists of a set of library units. Each partition may run
in a separate address space, possibly on a separate computer. A program may contain just one partition. A
distributed program typically contains multiple partitions, which caaae concurrently.

Pointery {ey2yeyYy F2N al 00Saa 2062S00d¢
Pragma A directive to the compiler.
PragmaAtomic Specifies that all reads and updates of an object are indivisible.

PragmaAtomic_Components Specifies that all reads and updates of an eletnad an array are indivisible.

Pragma Convention Specifies that an Ada entity should use the conventions of another language.

162 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

PragmaDetect Blocking A configuration pragma that specifies thatgdtentially blocking operations within a
protected opeation shall be detected, resulting in throgram_Erroexception being raised.

PragmaDiscard NamesSpecifies thastorage used at rutime for the names of certain entities may be
reduced.

Pragma Export Specifies an Ada entity to be accessed byeida language, thus allowing an Ada subprogram to
be called from a foreign language, or an Ada object to be accessed from a foreign language.

Pragma Import Specifies an entity defined in a foreign language that may be accessed from an Ada program,
thusallowing a foreigdanguage subprogram to be called from Ada, or a foréaguguage variable to be accessed
from Ada.

PragmaNormalize ScalarsA configuration pragma that specifiggt an otherwise uninitialized scalar object is
set to a predictable vak, but out of range if possible.

PragmaPack Specifies that storage minimization should be the main criterion when selecting the representation
of a composite type.

PragmaRestrictions Specifies that certain language features are not to be usediirea gpplication. For
example, thepragma Restrictions (No_Obsolescent_Featugshibits the use of any deprecated features. This
pragmais aconfiguration pragmehich means that all program units compiled into the library must obey the
restriction.

Pragma SuppressSpecifies that a rutime check need not be performed because the programmer asserts it will
always succeed.

PragmdJnchecked UnionSpecifies an interface correspondence between a given discriminated type and some
C union. Theragma spedfies that the associated type shall be given a representation that leaves no space for its
discriminant(s).

PragmaVolatile Specifies that all reads and updates on a volatile objegpa@r®rmed directly to memory.

PragmaVolatile_Components Species that all reads and updates of an element of an arrayparéormed
directly to memory.

Range checkA runtime check that ensures the result of an operation is contained within the range of allowable
values for a given type or subtype, such as thecklaone on the operand oftgpe-conversion.

Record Representation Clausesovide a way to specify the layout of components within records, that is, their
order, position, and size.

Scalar TypeAscalar type comprises enumeration types, integerggpand real types.

Separate CompilatiarAda requires that calls on libraries are checked for invalid situations as if the called routine
were declared locally.

Storage PoolA named location in an Ada program where all of the objects of a single &gpessill be
allocated. A storage pool can be sized exactly to the requirements of the application by allocating only what is

© ISTIEC2012¢ All rights reserved 163

WG 23/N 027 Baseline Edition 2TR 24772

needed for all objects of a single type without using the centrally managed heap. Exceptions raised due to
memory failures in a stage pool will not adversely affect storage allocation from other storage pools or from the
heap. Storage pools for types whose values are of equal lemigtimot suffer from fragmentation.

The following Ada restrictions prevent the application frormgsany allocators:

pragma Restrictions(No_Allocatorsprevents the use of allocators.

pragma Restrictions(No_Local Allocatorsprevents the use of allocators after the main program has
commenced.

pragma Restrictions(No_Implicit Heap Allocationg)revents the use of allocators that would use the
heap, but permits allocations from storage pools.

pragma Restrictions(No_Unchecked Deallocatian#events allocated storage from being returned and hence
effectively enforces storage pool memory approaches corapletely static approach to access types. Storage
pools are not affected by this restriction as explicit routines to free memory for a storage pool can be created.

Static expression€Expressions with statically known operands that are computed witht gxacision by the
compiler.

Storage Place Attribute$or a component of a record, the attributes (integ@gsition First_BitandLast_Bitare
used to specify the component position and size within the record.

Subtype declaration A construct that allws programmers to declare a named entity that defines a possibly
restricted subset of values of an existing type or subtype, typically by imposing a constraint, such as specifying a
smaller range of values.

Task A taskepresents a separate thread of dool that proceeds independently and concurrently between the
points where itinteractswith other tasks. An Ada program may be comprised of a collection of tasks.

Unsafe Programmingin recognition of the occasional need to step outside the type sy&edd (0 2 LIS NF 2 NI
operations, Ada provides clearly identified language features to do so. Examples include the generic
Unchecked_Conversidnr unsafetype-conversions otJnchecked_Deallocatidior the deallocation of heap

objects regardless of thexistence of surviving references to the object. If unsafe programming is employed in a
unit, then the unit needs to specify the respective generic unit in its context clause, thus identifying potentially
unsafe unitsSimilarly, there are ways to creagepotentially unsafe global pointer to a local object, using the
Unchecked_Accesattribute. A restriction pragma may be used to disallow usddrafhecked AccessThe
SUPPRES®ragma allows an implementation to omit certain rtime checks.

Userdefined floatingpoint types Types declared by the programmer that allow specification of digits of precision
and optionally a range of values.

Userdefined scalar typesTypes declared by the programmer for defining ordered sets of values of various kinds,
namely integer, enumeration, floatingoint, and fixedpoint types. The typing rules of the language prevent
intermixing of objects and values of distinct types.

164 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

C.3 Type System [IHN]

C.3.1 Applicability to language
Implicit conversions cause no applicatieulnerability, as long as resulting exceptions are properly handled.
Assignment between types cannot be performed except by using an explicit conversion.

Failure to apply correct conversion factors when explicitly converting among types for differéntuilhresult in
application failures due to incorrect values.

Failure to handle the exceptions raised by failed checks of dynamic subtype properties cause systems, threads o
components to halt unexpectedly.

Unchecked conversions circumvent the type eystand therefore can cause unspecified behaviour (368
Typebreaking Reinterpretation of Data [AMV]

C.3.2 Guidance to language users

1 The predefinedValid attribute for a given subtype may be aplito any value to ascertain if the value is
a valid value of the subtype. This is especially useful when interfacing witheypsystems or after
Unchecked_Conversion

1 A conceivable measure to prevent incorrect unit conversions is to restrict exoliorersions to the
bodies of useprovided conversion functions that are then used as the only means to effect the transition
between unit systems. These bodies are to be critically reviewed for proper conversion factors.

1 Exceptions raised by type asdbtypeconversions shall be handled.

C.4 Bit Representation [STR]

C4.1 Applicability to language

In general, the type system of Ada protects against the vulnerabilities outlined in Section 6.4. However, the use o
Unchecked_Conversigralling foeign language routines, and unsafe manipulation of address representations
voids these guarantees.

The vulnerabilities caused by the inherent conceptual complexity of bit level programming are as described in
Section 6.4.

C4.2 Guidance to language users

The vulnerabilities associated with the complexity ofleitel programming can be mitigated by:

1 The use of record and array types with the appropriate representation specifications added so that the
objects are accessed by their logical structure rathan their physical representation. These
representation specifications may address: order, position, and size of data components and fields.

1 The use of pragma Atomic apdagma Atomic_Componenti ensure that all updates to objects and
components happe atomically.

1 The use of pragma Volatile apdagma Volatile_Component® notify the compiler that objects and
components must be read immediately before use as other devices or systems may be updating them
between accesses of the program.

© ISTIEC2012¢ All rights reserved 16E

WG 23/N 027 Baseline Edition 2TR 24772

9 The default oect layout chosen by the compiler may be queried by the programmer to determine the
expected behaviour of the final representation.

For the traditional approach to blevel programming, Ada provides modular types and literal representations in
arbitrary base from 2 to 16 to deal with numeric entities and correct handling of the sign bit. The pssgofa
Packon arrays of Booleans provides a tygefe way of manipulating bit strings and eliminates the useridt-

prone arithmetic operations.

C5 Floating -point Arithmetic [PLF]

C5.1 Applicability to language
Ada specifies adherence to the IEEE Floating Point StandiaEE 54-2008, IEEB54-1987).

The vulnerability in Ada is as described in Sectiér26.
C5.2 Guidance to language users

1 Rathe than using predefined types, suchREsatandLong_Float whose precision may vary according to
the target system, declare floatingpint types that specify the required precisidorexample digits 10).
Additionally, specifying ranges of a floatingimt type enables constraint checks which prevents the
propagation of infinities and NaNs.

1 Avoid comparing floatingoint values for equality. Instead, use comparisons that account for the
approximate results of computation€onsult a numeric analyst whappropriate.

1 Make use of static arithmetic expressions and static constant declarations when possible, since static
expressions in Ada are computed at compile time with exact precision.

1 Use Ada's standardized numeric librarits €xample Generic_Elemdary Functions) for common
mathematical operations (trigopnometric operations, logarithmsd others.

1 Use an Ada implementation that supports Annex G (Numerics) of the Ada standard, and employ the
"strict mode" of that Annex in cases where additional aacy requirements must be met by floating
point arithmetic and the operations of predefined numerics packages, as defined and guaranteed by the
Annex.

1 Avoid direct manipulation of bit fields of floatifapint values, since such operations are generallgetr
specific and erraprone. Instead, make use of Ada's predefined floafiioint attributes guch as
'‘Exponent).

1 In cases where absolute precision is needed, consider replacement of flqalinigtypes and operations
with fixed-point types and operatios.

C6 Enumerator Issues [CCB]

C6.1 Applicability to language

Enumeration representation specification may be used to specifydefault representations of an enumeration

type, for example when interfacing with external systems. All of the valudwirnumeration type must be

defined in the enumeration representation specification. The numeric values of the representation must preserve
the original order. For example:

type 10_Typesis (Null_Op, Open, Close, Read, Write, Sync);
for 10_Typesuse(Null_Op => 0, Open => 1, Close => 2,

166 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Read => 4, Write => 8, Sync => 16);

An array may be indexed by such a typda does not prescribe the implementation model for arrays indexed by

an enumeratiortype with non-contiguous values. Two options exist: EittérS | NNJ @ A & NBLINB A S
and indexed by the values of the enumeration type, or the array is represeot@ijuously and indexed by the
position of the enumeration valueather than the value itselin the former case, theulnerability desched in

6.6 exists only if unsafe programming is appltechccess the arragr its component®utside the protection of

the type system. Within the type system, the semantics are well defined andidafa/ulnerability of unexpected

but welldefined progam behaviour upon extending an enumeration type exist in Ada. In particular, subranges or
others choices in aggregates and case statements are susceptible to unintentionally capturing newly added
enumeration values.

C6.2 Guidance to language users

9 Forcasestatements and aggregates, do not use titeers choice.
1 Forcasestatements and aggregates, mistrust subranges as choices after enumeration literals have been
added anywhere but the beginning or the end of the enumeration type definition

C7 Numeri ¢ Conversion Errors [FLC]

C7.1 Applicability to language

Ada does not permit implicit conversions between different numeric types, hence cases of implicit loss of data
due to truncation cannot occur as they can in languages that allow type coerciondretyees of different sizes.

In the case of explicit conversiosja language rules prevent numeric conversion errors, as follows:

1 Range bound checks are applied, so no truncation can occur, and an exception will be generated if the
operand of the conveien exceeds the bounds the target type or subtype.

1 Ada permits the definition of subtypes of existing types that can impose a restricted range of values, and
implicit conversions can occur for values of different subtypes belonging to the same tyseichut
conversions still involve range checks that prevent any loss of data or violation ofuhd$of the target
subtype.

Precision is lost only on explicit conversion from a real type to an integer type or a real type of less precision.
C7.2 Guidance to language users

1 Use Ada's capabilities for usdefined scalar types and subtypes to avoid accidental mixing of
logically incompatible value sets.

1 Use range checks on conversions involving scalar types and subtypes to prevent generation of invalid
data.

1 Use static analysis tools during program development to verify that conversions cannot violate the
range of their target.

C8 String Termination [CIM]

With the exception of unsafe programmigeeC2 General teminology and concepj)sthis vulnerability is not
applicable to Ada astrings in Ada are not delimited by a termination character. Ada programs that interface to

© ISTIEC2012¢ All rights reserved 167

WG 23/N 027 Baseline Edition 2TR 24772

languages that use neibrminated strings and manipulate such strings directly shouldyaihye vulnerability
mitigations recommended for that language.

C9 Buffer Boundary Violation (Buffer Overflow) [HCB]

With the exception of unsafe programming (38 General teminology and concepj)sthis vunerability is not
applicable to Ada athis vulnerability can only happen as a consequence of unchecked array indexing or
unchecked array copying (s€el0 Unchecked Array Indexing [X'ddAd C11 Unchecked Array Copying [XYW]

C10 Unchecked Array Indexing [XYZ]

C10.1 Applicability to language

All array indexing is checked automatically in Ada, and raises an exception when indexes are out of thoarisls
checked in all cases of indexing, including when arrays are passed to subprograms.

An explicit suppression of the checks can be requested by ysagia Suppressin which case the vulnerability
would apply; however, such suppression is eaf@lected, and generally reserved for tight tirdtical loops,
even in production code.

C10.2 Guidance to language users

1 Do not suppress the checks provided by the language.

1 Use Ada's support for wholerray operations, such as for assignment and comspar, plus aggregates
for whole-array initialization, to reduce the use of indexing.

1 Write explicit bounds tests to prevent exceptions for indexing out of bounds.

C11 Unchecked Array Copying [XYW]

With the exception of unsafe programming (388 General teminology and concepj)sthis vulnerability is not
applicable to Ada a&da allows arrays to be copied by simple assignment)('The rules of the language ensure
that no overflow can happen; instead, theaeptionConstraint_Errois raised if the target of the assignment is

not able to contain the value assigned to it. Since array copy is provided by the language, Ada does not provide
unsafe functions to copy structures by address and length.

C12 Pointer Casting and Pointer Type Changes [HFC]

C12.1 Applicability to language

The mechanisms available in Ada to alter the type of a pointer value are unchgpketbnversions antype-
conversions involving pointer types derived from a common tgpé. In addition, uses of the unchecked address
taking capabilities can create pointer types that misrepresent the true type of the designated entity (see Section
13.10 of the Ada Language Reference Manual).

The vulnerabilities described in Section 6ekist in Ada only if uncheckegpe-conversions or unsafe taking of
addresses are applied (s€2 General teminology and concepfsOther permittedtype-conversions can never
misrepresent theype of the designated entity.

168 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Checkedype-conversions that affect the application semantics adversely are possible.

C12.2 Guidance to language users

9 This vulnerability can be avoided in Ada by not using the features explicitly identified as.unsaf
1 Used A c owhishgs always type safe.

C13 Pointer Arithmetic [RVG]

With the exception of unsafe programming (Se€ General teminology and concepj)sthis vulnerability is not
applicable to Adas Ada des not allow pointer arithmetic.

C14 Null Pointer Dereference [XYH]

In Ada, this vulnerability does not exist, since compitee or runitime checks ensure that naull value can be
dereferenced.

Ada provides an optional qualification on access types $pecifies and enforces that objects of such types
cannot have a null value. Nanllness is enforced by rules that statically prohibit the assignment of eitinikr
or values from sources not guaranteed to be fraiil.

C15 Dangling Reference to Heap [XYK]

C15.1 Applicability to language

Use ofunchecked_Deallocatioran cause dangling references to the heap. The vulnerabilities described in 6.15
exist in Ada, when this feature is used, siktechecked_Deallocatiomay be applied even though thereea
outstanding references to the deallocated object.

Ada provides a model in which whole collections of halipcated objects can be deallocated safely,
automatically and collectively when the scope of the root access type ends.

For global access typeallocated objects can only be deallocated through an instantiation of the generic
procedureUnchecked_Deallocation

C15.2 Guidance to language users

9 Use local access types where possible.
1 Do not usdJnchecked_Deallocation
1 Use Controlled types and refance counting.

C16 Arithmetic Wrap -around Error [FIF]

With the exception of unsafe programming (38& General teminology and concep)sthis vulnerability is not
applicable to Ada as wraground arithmetian Ada is limited to modular types. Arithmetic operations on such
types use modulo arithmetic, and thus no such operation can create an invalid value of the type.

© ISTIEC2012¢ All rights reserved 16¢

WG 23/N 027 Baseline Edition 2TR 24772

For nonmodular arithmetic, Ada raises the predefined except@onstraint_Errowhenever a wap-around
occurs but, implementations are allowed to refrain from doing so when a correct final value is obtained. In Ada
there is no confusion between logical and arithmetic shifts.

C17 Using Shift Operations for Multiplication and Division [PIK]

With the exception of unsafe programming (S€€ General teminology and concep)sthis vulnerability is not
applicable to Ada as shift operations in Ada are limited to the modular types declared in the standkag@
Interfaces which are not signed entities.

C18 Sign Extension Error [XZI]

With the exception of unsafe programming (388 General teminology and concepj)sthis vulnerability is not
applicable to Adas Ada does not, explicitly or implicitly, allow unsigned extension operations to apply to signed
entities or viceversa.

C19 Choice of Clear Names [NAI]

C19.1 Applicability to language

There are two possible issues: the use of the identical naméiffi@rent purposes (overloading) and the use of
similar names for different purposes.

This vulnerability does not address overloading, which is covered in SE2iyOW
The risk of confusion by the use of similar names might occur through:

1 Mixed casig. Ada treats upper and lower case letters in names as identical. Thus no confusion can arise
through an attempt to use Item and ITEM as distinct identifiers with different meanings.

1 Underscores and periodé&da permits single underscores in identifiersl éiney are significant. Thus
BigDogandBig_Dogare different identifiers. But multiple underscores (which might be confused with a
single underscore) are forbidden, thB&gg__Dogis forbidden. Leading and trailing underscores are also
forbidden. Periods i@ not permitted in identifiers at all.

9 Singular/plural formsAda does permit the use of identifiers which differ solely in this manner such as
ltemandItems However, the user might use the identifier ltem for a single objecttgpa Tand the
identifier temsfor an object denoting an array of items thatisdf pe ar r alhe uéedlfemo f T
where Itemswas intended or vice versa will be detected by the compiler because of the type violation
and the program rejected so no vulnerability wouldsar

1 International character setAda compilers strictly conform to the appropriate international standard for
character sets.

1 Identifier length All characters in an identifier in Ada are significant. Thorgy_IdentifierAand
Long_IdentifierBare alwaydifferent. An identifier cannot be split over the end of a line. The only
restriction on the length of an identifier is that enforced by the line length and this is guaranteed by the
language standard to be no less than 200.

Ada permits the use of nameaah asX, XX, andXXX (which might all be declared as integers) and a
programmer could easily, by mistake, wrKX where X (or XXX) was intended. Ada does not attempt to catch
such errors.

170 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

The use of the wrong name will typically result in a failure tmgibe so no vulnerability will arise. But, if the
wrong name has the same type as the intended name, then an incorrect executable program will be generated.

C19.2 Guidance to language users

This vulnerability can be avoided or mitigated in Ada in thiediong ways:

1 Avoid the use of similar names to denote different objects of the same type.
1 Adopt a project convention for dealing with similar names
1 See the Ada Quality and Style Guide.

C20 Dead store [WXQ]

C20.1 Applicability to language

This vulneability exists in Ada as described in section 6.20, with the exception that in Ada if a variable is read by «
different thread (task) than the thread that wrote a value to the variable it is not a dead store. Simply marking a
variable as beinyolatile isusually considered to be toarror-prone for interthread (task) communication by the

Ada community, and Ada has numerous facilities for safer inter thread communication.

Ada compilers do exist that detect and generate compiler warnings for deagisstor

The error in 6.20.3 that the planned reader misspells the name of the store is possible but highly unlikely in Ada
since all objects must be declared and typed and the existence of two objects with almost identical names and
compatible types (for assignent) in the same scope would be readily detectable.

C20.2 Guidance to Language Users

1 Use Ada compilers that detect and generate compiler warnings for unused variables or use static analysis
tools to detect such problems.

C21 Unused Variable [YZS]

C21.1 Applicability to language

This vulnerability exists in Ada as described in section 6.21, although Ada compilers do exist that detect and
generate compiler warnings for unused variables.

C21.2 Guidance to language users

1 Do not declare variables of tleame type with similar names. Use distinctive identifiers and the strong
typing of Ada (for example through declaring specific types suéhigasounters range0 .. 1000rather
than justPig: Integer) to reduce the number of variables of the same type

Use Ada compilers that detect and generate compiler warnings for unused variables

Use static analysis tools to deted¢ad stores

= =

© ISTIEC2012¢ All rights reserved 171

WG 23/N 027 Baseline Edition 2TR 24772

C22 Identifier Name Reuse [YOW]

C22.1 Applicability to language

Ada is a language that permits local scope, and namithén nested scopes can hide identical names declared in

an outer scope. As such it is susceptible to the vulnerability. For subprograms and other overloaded entities the
problem is reduced by the fact that hiding also takes the signatures of theéesnitito account. Entities with

different signatures, therefore, do not hide each other.

Name collisions with keywords cannot happen in Ada because keywords are reserved.

The mechanism of failure identified in section 6.22.3 regarding the declaratioonefimique identifiers in the
same scope cannot occur in Ada because all characters in an identifier are significant.

C22.2 Guidance to language users

1 Useexpanded namewhenever confusion may arise

1 Use Ada compilers that generate compile time warnifoggleclarations in inner scopes thate
declarations in outer scopes.

1 Use static analysis tools that detect the same problem.

C23 Namespace Issues [BJL]

This vulnerability is not applicable to Ada because Ada does not attempt to disambiguate cgnfiaties

imported from different packages. Instead, use of a name with conflicting imported declarations causes a compile
time error. The programmer can disambiguate the name usage by using a fully qualified name that identifies the
exporting package.

C24 Initialization of Variables [LAV]

C24.1 Applicability to language

As inmany languages, it is possible in Ada to make the mistake of using the value of an uninitialized variable.
However, as described below, Ada prevents some of the most harmful poséiécts of using the value.

The vulnerability does not exist for pointer variables (or constants). Pointer variables are initialized to null by
default, and every dereference of a pointer is checked foulavalue.

The checks mandated by the typet&ys apply to the use of uninitialized variables as well. Use of aiobut
bounds value in relevant contexts causes an exception, regardless of the origin of the faulty val6&gSee
Ignored Error Statusand Unhandled Exceptiof®Y B regarding exception handling.) Thus, the only remaining
vulnerability is the potential use of a faulty but subtypenformant value of an uninitialized variable, sincs it
technically indistinguishable from a value legitimately computed by the application.

For record types, default initializations may be specified as part of the type definition.

For controlled types (those descended from the langudgined type Contribed or Limited_Controlled), the
user may also specify an Initialize procedure which is invoked on all deféialized objects of the type.

172 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

ThepragmaNormalize_Scalars can be used to ensure that scalar variables are always initialized by the gompiler
a repeatable fashion. Thigagmais designed to initialize variables to an aiftrange value if there is one, to
avoid hiding errors.

[Fadtex GKS dzaSNJ Oty 1jdzSNE G(GKS @QlItARAGE 2F | &A@Sy
variable X conforms to the subtype of X and false otherwise. Thus, the user can protect against the usd-of out
bounds uninitialized or otherwise corrupted scalar values.

C24.2 Guidance to language users

This vulnerability can be avoided or mitigdtem Ada in the following ways:

1 If the compiler has a mode that detects use before initialization, then this mode should be enabled and
any such warnings should be treated as errors.

1 Where appropriate, explicit initializations or default initializationa b& specified.

1 The pragma Normalize_Scalars can be used to causefoahge default initializations for scalar
variables.

T ¢KS Wzt AR | G0N O dzii Sf-rddgeyaluesTauded ByRhe lise of anRiayizédh F& 2 d
variables, without incurring #araising of an exception.
/I 2YY2y | ROAOS GKIFIG akKz2dzZz R 0S5 I @2 A RS RInithkingiaariad® With2 NJY
an inappropriate default value such as zero can result in hiding underlying problems, because the compiler or
other static analysis tools will then be unable to detect that the variable has been used prior to receiving a
correctly computed value.

C25 Operator Precedence/Order of Evaluation [JCW]

C25.1 Applicability to language

Since this vulnerability is abotihcorrect beliefs" of programmers, there is ho way to establish a limit to how far
incorrect beliefs can go. However, Ada is less susceptible to that vulnerability than many other languages, since
1 Ada only has six levels of precedence and associativityser to common expectations. For example, an

expression liké = B or C = Dwill be parsed as expecteds(A = B) or (C = D).
1 Mixed logical operators are not allowed without parenthedes,example "A or B or C' is valid, as well

as 'A and B and C but "A and B or C is not (must write "(A and B) or C" or "A and (B or C)".
1 Assignment is not an operator in Ada.

C25.2 Guidance to language users

The general mitigation measures can be applied to Ada like any other language.
C26 Side-effects and Order of Evaluation [SAM]

C26.1 Applicability to language

There are no operators in Ada with direct side effects on their operands using the lardefged operations,
especially not the increment and decrement operation. Ada does not permit multiple assigs in a single
expression or statement.

© ISTIEC2012¢ All rights reserved 173

WG 23/N 027 Baseline Edition 2TR 24772

There is the possibility though to have side effects through function calls in expressions where the function
modifies globally visible variables. Although functions only havegarameters, meaning that they amnot

allowed to modify the value of their parameters, they may modify the value of global variables. Operators in Ada
are functions, so, when defined by the user, although they cannot modify their own operands, they may modify
global state and thereforedve side effects.

Ada allows the implementation to choose the order of evaluation of expressions with operands of the same
precedence level, the order of association is-tefright. The operands of a binary operation are also evaluated
in an arbitrary oder, as happens for the parameters of any function call. In the case oflefieed operators

with side effects, this implementation dependency can cause unpredictability of the side effects.

C26.2 Guidance to language users

1 Make use of one or more pgramming guidelines which prohibit functions that modify global state, and
can be enforced by static analysis.

1 Keep expressions simple. Complicated code is prone to error and difficult to maintain.

1 Always use brackets to indicate order of evaluation adrapors of the same precedence level.

C27 Likely Incorrect Expression [KOA]

C27.1 Applicability to language

An instance of this vulnerability consists of two syntactically similar constructs such that the inadvertent
substitution of one for the othemay result in a program which is accepted by the compiler but does not reflect
the intent of the author.

The examples given in 6.27 are not problems in Ada because of Ada's strong typing and because an assignment is
not an expression in Ada.

In Ada, aype-conversion and a qualified expression are syntactically similar, differing only in the presence or
absence of a single character:

Type_Name (Expressior) atype-conversion
VS.
Type_Name'(Expression) a qualified expression

Typically, theriadvertent substitution of one for the other results in either a semantically incorrect program

which is rejected by the compiler or in a program which behaves in the same way as if the intended construct had
been written. In the case of a constrained ariubtype, the two constructs differ in their treatment of sliding
(conversion of an array value with bounds 100 .. 103 to a subtype with bounds 200 .. 203 will succeed;
gualification will fail a rustime check).

Similarly, a timed entry call and a condital entry call with an elspart that happens to begin with delay
statement differ only in the use o&lsé vs. 'br" (or even then abort" in the case of asynchronous_select
statement).

174 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Probably the most common correctness problem resulting fromue of one kind of expression where a
syntactically similar expression should have been used has to do with the use etistwittvs. norshort-circuit
Booleanvalued operationsf¢r example "and then" and "or els€' vs. '‘and" and 'or"), as in

if (Ptr/=null) and (Ptr.all.Count > Ojhen ... end if;

-- should have usedhd then' to avoid dereferencing null
C27.2 Guidance to language users

1 Compilers and other static analysis tools can detect some cases (such as the preceding example).

91 Developers maglso choose to use shecircuit forms by default (errors resulting from the incorrect use
of shortcircuit forms are much less common), but this makes it more difficult for the author to express
the distinction between the cases where shaitcuited evalation is known to be needed (either for
correctness or for performance) and those where it is not.

C28 Dead and Deactivated Code [XYQ)]

C28.1 Applicability to language

Ada allows the usual sources of dead code (described in 6.28) that are commonttoomesntional
programming languages.

C28.2 Guidance to language users

Implementation specific mechanisms may be provided to support the elimination of dead code. In some cases,
pragmas such afestrictionsSuppressor Discard_Namemay be used to infan the compiler that some code
whose generation would normally be required for certain constructs would be dead because of properties of the
overall system, and that therefore the code need not be generated. For example, given the following:

packagePkgis
type Enumis (Aaa, Bbb, Ccc);
pragma Discard_Names(Enum);
end Pkg;

If Pkg.Enum'imagend related attributesfor example Value, Wide_Imaggof the type are never used, and if the
implementation normally builds a table, then tipeagma allows the elirmation of the table.

C29 Switch Statements and Static Analysis [CLL]

C29.1 Applicability to language

With the exception of unsafe programming (S&€ General teminology and concepfand the use of default
casesthis vulnerability is not applicable to Ada as Ada ensures that a case statement provides exactly one
alternative for each value of the expression's subtypais restriction is enforced at compile time. Ttkers

clause may be used as the labbice of a case statement to capture any remaining values of the case expression
type that are not covered by the preceding case choidkthe value of the expression is outside of the range of
this subtype for example due to an uninitialized variad), then the resulting behaviour is weléfined

© ISTIEC2012¢ All rights reserved 17E

WG 23/N 027 Baseline Edition 2TR 24772

(Constraint_Error is raised). Control does not flow from one alternative to the next. Upon reaching the end of an
alternative, control is transferred to the end of tlsasestatement.

The remaining vulnetfality is that unexpected values are captured by tikersclause or a subrange as case
choice. For example, when the range of the type Character was extended from 128 characters to the 256
characters in the Latith character type, anthers clause for a&asestatement with a Character type case
expression originally written to capture cases associated with the 128 characters type now captures the 128
additional cases introduced by the extension of the type Character. Some of the new characters may have
needed to be covered by the existing case choarasew case choices

C29.2 Guidance to language users

9 Forcasestatements and aggregates, avoid the use ofdkigers choice.
1 Forcasestatements and aggregates, mistrust subranges as choices after eatiomeliterals have been
added anywhere but the beginning or the end of the enumeration type definfion.

C30 Demarcation of Control Flow [EOQJ]

This vulnerability is not applicable to Ada as the Ada syntax describes several types of compound s$satieahen

are associated with control flow includiifgstatements Joop statements casestatements selectstatements, and
extendedreturn statements. Each of these forms of compound statements require unique syntax that marks the
end of the compound stataeent.

C31 Loop Control Variables [TEX]

With the exception of unsafe programming (388 General teminology and concepj)sthis vulnerability is not
applicable to Ada as Ada definefoaloop where the numbe of iterations is controlled by a loop control variable
(called a loop parameter). This value has a constant view and cannot be updated within the sequence of
statements of the body of the loop.

C32 Off-by-one Error [XZH]

C32.1 Applicability to langua ge

Confusion between the need for < and <= or > and >=in a test.
Afor loop in Ada does not require the programmer to specify a conditional test for loop termination.
Instead, the starting and ending value of the loop are specified which eliminatesthisesof offby-one
errors. Awhile loop however, lets the programmer specify the loop termination expression, which could
be susceptible to an offy-one error.

Confusion as to the index range of an algorithm.
Although there are language defined attribstéo symbolically reference the start and end values for a
loop iteration, the language does allow the use of explicit values and loop termination tests-Qfé
errors can result in these circumstances.

9 This case is somewhat specialized but is important, since enumerations aredlasmwhere subranges tuibadon the user.

176 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

Care should be taken when using thengthattribute in the loop termination expression. The
expression should generally be relative to thRestvalue.

The strong typing of Ada eliminates the potential for buffer overflow associated with this vulnerability. If
the error is not statically caught at cquite time, then a rurtime check generates an exception if an
attempt is made to access an element outside the bounds of an array.

Failing to allow for storage of a sentinel value.
Ada does not use sentinel values to terminate arrays. There is no needadara for the storage of a
sentinel value, therefore this particular vulnerability concern does not apply to Ada.

C32.2 Guidance to language users

1 Whenever possible, for loop should be used instead ofvehile loop.

1 Whenever possible, thirst, 'Last and'Rangeattributes should be used for loop termination. If the
‘Lengthattribute must be used, then extra care should be taken to ensure that the length expression
considers the starting index value for the array.

C233 Structured Programming [EWD]
C233.1 Applicability to language

Ada programs can exhibit many of the vulnerabilities note@l.88 leaving doop at an arbitrary point, local
jumps @oto), and multiple exit points from subprograms.

Ada however does not suffer from ndacal jumps and mitiple entries to subprograms.
C33.2 Guidance to language users

Avoid the use ofjoto, loop exitstatements return statements inprocedures and more than onesturn
statement in aunction If not following this guidance caused the function code to leacer¢ short of
appropriate restructuring; then multiple exit points should be used.

C34 Passing Parameters and Return Values [CSJ]
C34.1 Applicability to language

Ada employs the mechanisn®i example modesin, out andin out) that are recommened in Section 6.34.
These mode definitions are not optional, moidebeing the default. The remaining vulnerability is aliasing when a
large object is passed by reference.

C34.2 Guidance to language users

91 Follow avoidance advice in Section 6.34.

© ISTIEC2012¢ All rights reserved 177

WG 23/N 027 Baseline Edition 2TR 24772

C35 Dangling References to Stack Frames [DCM]

C35.1 Applicability to language

In Ada, the attributéAddressyields a value of some systespecific type that is not equivalent to a pointer. The
attribute 'Accessprovides an access value (what other languagdisacpointer) Addresses and access values are
not automatically convertible, although a predefined set of generic functions can be used to convert one into the
other. Access values are typed, that is to,shgy can only designate objects of a partiautgpe or class of types.

As in other languages, it is possible to apply'fedressattribute to a local variable, and to make use of the
resulting value outside of the lifetime of the variable. Howewddresds very rarely used in this fashion idaA
Most commonly, programs usAccesdo provide pointers to objects and subprograms, and the language
enforces accessibility checks whenever code attempts to use this attribute to provide access to a local object
outside of its scope. These accessipitihecks eliminate the possibility of dangling references.

As for all other languagdefined checks, accessibility checks can be disabled over any portion of a program by
using theSupprespragma. The attributeUnchecked_Accegzroduces values that are empt from accessibility
checks.

C35.2 Guidance to language users

Only useéAddressattribute on static objectsf¢r example a register address).

Do not uséAddresdo provide indirect untyped access to an object.

Do not use conversion betweegkddressand access types.

Use access types in all circumstances when indirect access is needed.

Do not suppress accessibilithecks.

Avoid use of the attributéJnchecked_Access

A4S Wl 00Saa FGUNROdzIS Ay LINBFSNByOS (2 W! RRNBaad

=A =4 =4 =8 =8 =8 =9

C36 Subprogram Signature Misma tch [OTR]

C36.1 Applicability to language

There are two concerns identified with this vulnerability. The first is the corruption of the execution stack due to
the incorrect number or type of actual parameters. The second is the corruption of the exestaitk due to
calls to externally compiled modules.

In Ada, at compilation time, the parameter association is checked to ensure that the type of each actual
parameter matches the type of the corresponding formal parameter. In addition, the formal paramete

specification may include default expressions for a parameter. Hence, the procedure may be called with some
actual parameters missing. In this case, if there is a default expression for the missing parameter, then the call will
be compiled without any eors. If default expressions are not specified, then the procedure call with insufficient
actual parameters will be flagged as an error at compilation time.

Caution must be used when specifying default expressions for formal parameters, as their ussufiap r
successful compilation of subprogram calls with an incorrect signafime execution stack will not be corrupted
in this event but the program may be executing with unexpected values.

178 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

When calling externally compiled modules that are Ada proguaits, the type matching and subprogram
interface signatures are monitored and checked as part of the compilation and linking of the full application.
When calling externally compiled modules in other programming languages, additional steps are needed to
ensure that the number and types of the parameters for these external modules are correct.

C36.2 Guidance to language users

9 Do not use default expressions for formal parameters.

1 Interfaces between Ada program units and program units in other languagesecaanaged using
pragma Importto specify subprograms that are defined externally gnalgma Exportto specify
subprograms that are used externally. Thesagmas specify the imported and exported aspects of the
subprograms, this includes the calling gention. Like subprogram calls, all parameters need to be
specified when usingragma Importandpragma Export.

1 Thepragma Conventiormay be used to identify when an Ada entity should use the calling conventions of
a different programming language facititag the correct usage of the execution stack when interfacing
with other programming languages.

1 In addition, theValid attribute may be used to check if an object that is part of an interface with another
language has a valid value and type.

C37 Recursion [GDL]

C37.1 Applicability to language

Ada permits recursion. The exceptiSiorage_Errois raised when the recurring execution results in insufficient
storage.

C37.2 Guidance to language users

9 If recursion is used, thenStorage Erroexception landler may be used to handle insufficient storage
due to recurring execution.

1 Alternatively, the asynchronous control construct may be used to time the execution of a recurring call
and to terminate the call if the time limit is exceeded.

1 In Ada, thepragma Restrictiongnay be invoked with the paramet&o_Recursionlin this case, the
compiler will ensure thats@part of the execution of a subprogram the same subprogram is not invoked.

C38 Ignored Error Status and Unhandled Exceptions [OYB]

C38.1 Applicability to language

Ada offers a set of predefined exceptions for error conditions that may be detected by checks that are compiled
into a program. In addition, the programmer may define exceptions that are appropriate for their application.
These excefpns are handled using an exception handler. Exceptions may be handled in the environment where
the exception occurs or may be propagated out to an enclosing scope.

As described in 88, there is some complexity in understanding the exception handlindpod®logy especially
with respect to objecbriented programming and muithreaded execution.

© ISTIEC2012¢ All rights reserved 17¢

WG 23/N 027 Baseline Edition 2TR 24772

C38.2 Guidance to language users

91 In addition to the mitigations defined in the main text, values delivered to an Ada program from an
external device may be chked for validity prior to being used. This is achieved by testiny #tie
attribute.

C39 Termination Strategy [REU]

C39.1 Applicability to language

An Ada system that consists of multiple tasks is subject to the same hazards as multithreaded sysitirer
languages. A task that fails, for example, because its execution violates a latigfiagel check, terminates
quietly.

Any other task that attempts to communicate with a terminated task will receive the excepéisking_Error
The undiscipling use of theabort statement or the asynchronous transfer of control feature may destroy the
functionality of a multitasking program.

C39.2 Guidance to language users

1 Include exception handlers for every task, so that their unexpected termination charitded and
possibly communicated to the execution environment.

1 Use objects of controlled types to ensure that resources are properly released if a task terminates

unexpectedly.

Theabort statement should be used sparingly, if at all.

For highintegrity systems, exception handling is usually forbidden. However, ddopl exception

handler can be used to restore the overall system to a coherent state.

91 Define interrupt handlers to handle signals that come from the hardware or the operating system. This
mechanism can also be used to add robustness to a concurrent program.

1 Annex C of the Ada Reference Manual (Systems Programming) defirecitegge Ada.Task_Termination
to be used to monitor task termination and its causes.

1 Annex H of the Ada Reference Mah(idigh Integrity Systems) describes sevprabma, restrictions,
and other language features to be used when writing systems forreiggibility applications. For
example, thepragma Detect_Blockingorces an implementation to detect a potentially blad
operation within a protected operation, and to raise an exception in that case.

= =

C40 Type-breaking Reinterpretation of Data [AMV]

C40.1 Applicability to language

UncheckedConversioncan be used to bypass the tyoebecking rules, and its use is thussafe, as in any other
language. The same applies to the us&ntheckedUnion, even though the language specifies various inference
rules that the compiler must use to catch statically detectable constraint violations.

Type reinterpretation is a univeal programming need, and no usable programming language can exist without
some mechanism that bypasses the type model. Ada provides these mechanisms with some additional
safeguards, and makes their use purposely verbose, to alert the writer and the refaa@rogram to the

presence of an unchecked operation.

180 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

C40.2 Guidance to language users

1 The fact thatUnchecked Conversida a generic function that must be instantiated explicitly (and given a
meaningful name) hinders its undisciplined use, and @ackud marker in the code wherever it is used.
Wellwritten Ada code will have a small set of instantiation&Jathecked_Conversion

1 Most implementations require the source and target types to have the same size in bits, to prevent
accidental truncatia or sign extension.

1 Unchecked_Unioshould only be used in muliitnguage programs that need to communicate data
between Ada and C or C++. Otherwise the use of discriminated types prevents "punning" between values
of two distinct types that happen to shastorage.

9 Using address clauses to obtain overlays should be avoided. If the types of the objects are the same, thel
a renaming declaration is preferable. Otherwise, giegma Importshould be used to inhibit the
initialization of one of the entities sihat it does not interfere with the initialization of the other one.

C41 Memory Leak [XYL]

C41.1 Applicability to language

For objects that are allocated from the heap without the use of reference counting, the memory leak vulnerability
is possible i\da. For objects that must allocate from a storage pool, the vulnerability can be present but is
restricted to the single pool and which makes it easier to detect by verification. For objects of a controlled type
that uses referencing counting and thatamot part of a cyclic reference structure, the vulnerability does not

exist.

Ada does not mandate the use of a garbage collector, but Ada implementations are free to provide such memory
reclamation. For applications that use and return memory on an npéntation that provides garbage
collection, the issues associated with garbage collection exist in Ada.

C41.2 Guidance to language users

1 Use storage pools where possible.
1 Use controlled types and reference counting to implement explicit storage managaystems that
cannot have storage leaks.

1 Use a completely static model where all storage is allocated from global memory and explicitly managed
under program control.

C42 Templates and Generics [SYM]

With the exception of unsafe programming (S€€ General teminology and concep)sthis vulnerability is not
applicable to Ada ahe Ada generics model is based on imposing a contract on the structure and operations of
the types that can be used for instartian. Also, explicit instantiation of the generic is required for each
particular type.

Therefore, the compiler is able to check the generic body for programming errors, independently of actual
instantiations. At each actual instantiation, the compilell aiso check that the instantiated type meets all the
requirements of the genericontract.

© ISTIEC2012¢ All rights reserved 181

WG 23/N 027 Baseline Edition 2TR 24772

I'RI fa2 R2S&a y2i Ftt2g TFT2N WALISOAIl f uldcanSigentTodall SNA O &
instantiations.

C43 Inheritance [RIP]

C43.1 Applicability to language

The vulnerability documented in Section 6.43 applies to Ada.

Ada only allows a restricted form of multiple inheritance, where only one of the multiple ancestors (the parent)
may define operations. All other ancestors (inte@ad 0 Ol y 2y f & &aLISOATEe (KS 2 LISNI
does not suffer from multiple inheritance derived vulnerabilities.

C43.2 Guidance to language users

1 Use the overriding indicators on potentially inherited subprograms to ensure that thedatkcontract is
obeyed, thus preventing the accidental redefinition or failure to redefine an operation of the parent.
1 Use the mechanisms of mitigation described in the main body of the document.

C44 Extra Intrinsics [LRM]

The vulnerability does not @y to Ada, because all subprograms, whether intrinsic or not, belong to the same
name space. This means that all subprograms must be explicitly declared, and the same name resolution rules
apply to all of them, whether they are predefined or uskefined.If two subprograms with the same name and
signature are visible (that is to say nameable) at the same place in a program, then a call using that name will be
rejected as ambiguous by the compiler, and the programmer will have to specify (for examplaby ofi@

qualified name) which subprogram is meant.

C45 Argument Passing to Library Functions [TRJ]

C45.1 Applicability to language

The general vulnerability that parameters might have values precluded by preconditions of the called routine
applies toAda as well.

However, to the extent that the preclusion of values can be expressed as part of the type system of Ada, the

preconditions are checked by the compiler statically or dynamically and thus are no longer vulnerabilities. For
example, any rangeoastraint on values of a parameter can be expressed in Ada by means of type or subtype

declarations. Type violations are detected at compile time, subtype violations causieneiexceptions.

C45.2 Guidance to language users

1 Exploit the type and subtypsystem of Ada to express preconditions (and postconditions) on the values
of parameters.

1 Document all other preconditions and ensure by guidelines that either callers or callees are responsible
for checking the preconditions (and postconditions). Wrappésprograms for that purpose are
particularly advisable.

9 Library providers shouldogcify the response to invalid values.

182 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

C46 Inter -language Calling [DJS]

C46.1 Applicability to Language

The vulnerability applies to Ada, however Ada provides mechanisrimterface with common languages, such as
C, Fortran and COBOL, so that vulnerabilities associated with interfacing with these languages can be avoided.

C46.2 Guidance to Language Users

1 Use the intedanguage methods and syntax specified by the Aefai@nce Manual when the routines to
be called are written in languages that the ARM specifies an interface with.
1 Use interfaces to the C programming language where the other language system(s) are not covered by
the ARM, but the other language systems &avterfacing to C.
1 Make explicit checks on all return values from foreign system egiifacts for example by using the
'Valid attribute or by performing explicit tests to ensure that values returned by-largguage calls
conform to the expected repsentation and semantics of the Ada application.

C47 Dynamically -linked Code and Self-modifying Code [NYY]

With the exception of unsafe programming (388 General teminology and concepj)sthis vulnerabiliy is not
applicable to Ada as Ada supports neither dynamic linking nonsadifying code. The latter is possible only by
exploiting other vulnerabilities of the language in the most malicious ways and even then it is still very difficult to
achieve.

C48 Library Signature [NSQ]

C48.1 Applicability to language

Ada provides mechanisms to explicitly interface to modules written in other languages. Pragmas Import, Export
and Convention permit the name of the external unit and the interfacing conventibe gpecified.

Even with the use gfragma Import, pragma Exportand pragma Conventiorthe vulnerabilities stated in Section
6.48 are possible. Names and number of parameters change under maintenance; calling conventions change as
compilers are updated aeplaced, and languages for which Ada does not specify a calling convention may be
used.

C48.2 Guidance to language users

i The mitigation mechanisms of Section 6.48.5 are applicable.
C49 Unanticipated Exceptions from Library Routines [HIW]
C49.1 Appli cability to language

Ada programs are capable of handling exceptions at any level in the program, as long as any exception naming
and delivery mechanisms are compatible between the Ada program and the library components. In such cases tt
normal Ada excepdn handling processes will apply, and either the calling unit or some subprogram or task in its

© ISTIEC2012¢ All rights reserved 183

WG 23/N 027 Baseline Edition 2TR 24772

call chain will catch the exception and take appropriate programmed action, or the task or program will
terminate.

If the library components themselves are #ten in Ada, then Ada's exception handling mechanisms let all called
units trap any exceptions that are generated and return error conditions instead. If such exception handling
mechanisms are not put in place, then exceptions can be unexpectedly delieenethller.

If the interface between the Ada units and the library routine being called does not adequately address the issue
of naming, generation and delivery of exceptions across the interface, then the vulnerabilities as expressed in
Section 6.49 afdp.

C49.2 Guidance to language users

91 Ensure that the interfaces with libraries written in other languages are compatible in the naming and
generation of exceptions.

1 Put appropriate exception handlers in all routines that call library routines, incluklegatchall
exception handlewhen others=>.

1 Document any exceptions that may be raised by any Ada units being used as library routines.

C50 Pre-Processor Directives [NMP]

This vulnerability is not applicable to Ada as Ada does not haveprpcesor.

C51 Suppression of Language-defined Run -time Checking [MXB]

C51.1 Applicability to Language

¢KS Odzt ySNIroAftAGe SEAaGA Ay ! R aAyOS a kdifihed ahkcks{ dzLJLIN
on a unitby-unit basis or on partitionsrgprograms as a whole. (The languatgdined default, however, is to

perform the runtime checks that prevent the vulnerabilities.) Pragma Suppress can suppress all latejunege

checks or 12 individual categories of checks.

C51.2 Guidance to Language Users

1 Do not suppress language defined checks.

1 If languagedefined checks must be suppressed, use static analysis to prove that the code is correct for all
combinations of inputs.

1 If languagedefined checks must be suppressed, use explicit checks at ajgplaces in the code to
ensure that errors are detected before any processing that relies on the correct values.

C52 Provision of Inherently Unsafe Operations [SKL]

C52.1 Applicability to Language

In recognition of the occasional needtostepduR S G KS (@LIS adaidsSy 2N 42 LISNF?2
provides clearly identified language features to do so. Examples include the génehiecked_Conversidor
unsafetype-conversions otJnchecked_Deallocatidior the deallocation of heap obges regardless of the

existence of surviving references to the object. If unsafe programming is employed in a unit, then the unit needs

184 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

to specify the respective generic unit in its context clause, thus identifying potentially unsafeSimitigrly, thee
are ways to create a potentially unsafe global pointer to a local object, usingribleecked_Accesatribute.

C53 Obscure Language Features [BRS]

C53.1 Applicability to language

Ada is a rich language and provides facilities for a wide range t€aippn areas. Because some areas are
specialized, it is likely that a programmer not versed in a special area might misuse features for that area. For
example, the use of tasking features for concurrent programming requires knowledge of this domdarlysim

the use of exceptions and exception propagation and handling requires a deeper understanding of control flow
issues than some programmers may possess.

C53.2 Guidance to language users

Thepragma Restrictionan be used to prevent the use of cairt features of the language. Thus, if a program
should not use feature X, then writilmgagma Restrictions (No_X)ensures that any attempt to use feature X
prevents the program from compiling.

Similarly, features in a Specialized Needs Annex shouldenesdd unless the application area concerned is-well
understood by the programmer.

C54 Unspecified Behaviour [BQF]

C54.1 Applicability to language

In Ada, there are two main categories of unspecified behaviour, one having to do with unspecified aépects
normal runtime behaviour, and one having to do witlounded errorserrors that need not be detected at run
time but for which there is a limited number of possible 1time effects (though always including the possibility
of raisingProgram_Erroy.

For the normal behaviour category, there are several distinct aspects eimanbehaviour that might be
unspecified, including:

9 Order in which certain actions are performed at +iime;

1 Number of times a given element operation is performed within an afien invoked on a composite or
container object;

1 Results of certain operations within a languadgfined generic package if the actual associated with a
LI NI A Odzf F NJ F2NXIf &dzoLINPINIF Y R2Sa y20 YSSG aidl
ordering relationship);

1 Whether distinct instantiations of a generic or distinct invocations of an operation produce distinct values
for tags or accesw-subprogram values.

The index entry in the Ada Standard torspecifiedorovides the full list. Similar] the index entry fobounded
error provides the full list of references to places in the Ada Standard where a bounded error is described.

Failure can occur due to unspecified behaviour when the programmer did not fully account for the possible
outcomes,and the program is executed in a context where the actual outcome was not one of those handled,
resulting in the program producing an unintended result.

© ISTIEC2012¢ All rights reserved 18E

WG 23/N 027 Baseline Edition 2TR 24772

C54.2 Guidance to language users

As in any language, the vulnerability can be reduced in Ada bgliagdituations that have unspecified
behaviour, or by fully accounting for the possible outcomes.

Particular instances of this vulnerability can be avoided or mitigated in Ada in the following ways:

1 For situations where order of evaluation or number o&lkesations is unspecified, using only operations
with no sideeffects, or idempotent behaviour, will avoid the vulnerability;

9 For situations involving generic formal subprograms, care should be taken that the actual subprogram
satisfies all of the stated erctations;

9 For situations involving unspecified values, care should be taken not to depend on equality between
potentially distinct values;

1 For situations involving bounded errors, care should be taken to avoid the situation completely, by
ensuring in otler ways that all requirements for correct operation are satisfied before invoking an
operation that might result in a bounded error. See the Ada Annex section on Initialization of Variables
[LAV] for a discussion of uninitialized variables in Ada, a conuawese of a bounded error.

C55 Undefined Behaviour [EWF]

C55.1 Applicability to language

In Ada, undefined behaviour is calledoneous executigrand can arise from certain errors that are not required
to be detected by the implementation, and whos#ects are not in general predictable.

There are various kinds of errors that can lead to erroneous execution, including:

1 Changing a discriminant of a record (by assigning to the record as a whole) while there remain active
references to subcomponents tife record that depend on the discriminant;

1 Referring via an access value, task id, or tag, to an object, task, or type that no longer exists at the time of
the reference;

1 Referring to an object whose assignment was disrupted by an abort statement, piioraking a new

assignment to the object;

Sharing an object between multiple tasks without adequate synchronization;

Suppressing a languagefined check that is in fact violated at rtime;

Specifying the address or alignment of an object in an inapjatgpway;

UsingUnchecked_ConversigpAddress_To_Access_Conversipos calling an imported subprogram to

create a value, or reference to a value, that hasbnormalrepresentation.

=A =4 =4 =9

The full list is given in the index of the Ada Standard ued@meousexecution

Any occurrence of erroneous execution represents a failure situation, as the results are unpredictable, and may
involve overwriting of memory, jumping to unintended locations within memangd other uncontrolled events

C55.2 Guidance to language users

The common errors that result in erroneous execution can be avoided in the following ways:

i All data shared between tasks should be within a protected object or marked Atomic, whenever practical;

186 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Any use obUnchecked_Deallocatioshould be caraflly checked to be sure that there are no remaining
references to the object;
9 pragma Suppresshould be used sparingly, and only after the code has undergone extensive verification.

The other errors that can lead to erroneous execution are less commaitjdarly in any given Ada application,
care must be taken when using features such as:

1 abort;

1 Unchecked_Conversion;

9 Address To Access_Conversions;

9 The results of imported subprograms;

1 Discriminanichanging assignments to global variables.

The mitigatbns described in Section 6.55.5 are applicable here.

C56 Implementation -Defined Behaviour [FAB]

C56.1 Applicability to language

There are a number of situations in Ada where the language semantics are implementation defined, to allow the
implementationto choose an efficient mechanism, or to match the capabilities of the target environment. Each of
these situations is identified in Annex M of the Ada Standard, and implementations are required to provide
documentation associated with each item in Annexdvprovide the programmer with guidance on the
implementation choices.

A failure can occur in an Ada application due to implementadiefined behaviour if the programmer presumed

the implementation made one choice, when in fact it made a different chibiaeaffected the results of the
execution. In many cases, a comgilme message or a rutime exception will indicate the presence of such a
problem. For example, the range of integers supported by a given compiler is implementation defined. However,
if the programmer specifies a range for an integer type that exceeds that supported by the implementation, then
a compiletime error will be indicated, and if at run time a computation exceeds the base range of an integer type,
then aConstraint_Errofis rased.

Failure due to implementatiodefined behaviour is generally due to the programmer presuming a particular

effect that is not matched by the choice made by the implementation. As indicated above, many such failures are
indicated by compildime error messages or rutime exceptions. However, there are cases where the
implementationtdefined behaviour might be silently misconstrued, such as if the implementation presumes
Ada.Exceptions.Exception_Informatioeturns a string with a particular format, whém fact the implementation

does not use the expected format. If a program is attempting to extract information Exception_Information

for the purposes of logging propagated exceptions, then the log might end up with misleading or useless
informationifit KSNB A& I YAAYFGOK 06S06SSy (GKS LINPINFYYSNRA
defined format.

C56.2 Guidance to language users

Many implementatiordefined limits have associated constants declared in langdafjeed packages, generally
package System In particular, the maximum range of integers is givespstem.Min_Int .. System.Max_|rand
other limits are indicated by constants suchSystem.Max_Binary_ModuluSystem.Memory_Size

© ISTIEC2012¢ All rights reserved 187

WG 23/N 027 Baseline Edition 2TR 24772

System.Max_Mantissand similar Other implementatiordefined limits are implicit in normal F iand$. a s t
attributes of language@lefined (sub) types, such &y st e m. P ranaSryistt yeonF i Prr.drtithermoreg, 6 L a s t
the implementationdefined representation aspects of types and subtypes can be querithgyagedefined

attributes. Thus, code can be parameterized to adjust to implementadiefimed properties without modifying

the code.

1 Programmers should be aware of the contents of Annex M of the Ada Standard and avoid
implementationdefined behaviour Wwenever possible.

1 Programmers should make use of the constants and subtype attributes provided in package System and
elsewhere to avoid exceeding implementatidaefined limits.

1 Programmers should minimize use of any predefined numeric types, as thesranderecisions of these
are all implementation defined. Instead, they should declare their own numeric types to match their
particular application needs.

1 When there are implementatiodefined formats for strings, such &xception_ Informatiopany
necesary processing should be localized in packages with implementspiecific variants.

C57 Deprecated Language Features [MEM]

C57.1 Applicability to language

If obsolescent language features are used, then the mechanism of failure for the vulmgialab described in
Section 6.57.3.

C57.2 Guidance to language users

1 Usepragma Restrictions (No_Obsolescent_Featuteg)revent the use of any obsolescent features.
1 Refer to Annexof the Ada reference manual to determine if a featurelisolescen

C58 Implications for standardization

Future standardization efforts should considkee following items to address vulnerability issues identified earlier
in this Annex

1 Some language$of example Java) require that all local variables either bddhzed at the point of
declaration or on all paths to a reference. Such a rule could be considered for Ada2&eetialization
of Variables [LAY]

1 PragmaRestrictiongould be extended to allow thuse of these features to be statically checked (see
C33 Structured Programming [EWD]

1 When appropriate, languagaefined checks should be added to reduce the possibility of multiple
outcomes from a sigle construct, such as by disallowing sidfects in cases where the order of
evaluation could affect the result (s€&54 Unspecified Behaviour [BOF]

1 When appropriate, languagéefined checks shoulbe added to reduce the possibility of erroneous
execution, such as by disallowing unsynchronized access to shared variables$déedefined
Behaviour [EWIF]

1 Language standards should specify reldsitght boundaries on implementatiedefined behaviour
whenever possible, and the standard should highlight what levels represent a portable minimum
capability on which programmers may rely. For languages like Ada that allow user declaration of numeric
types, the number of predefined numeric types should be minimized (for example, strongly discourage or
disallow declarations dByte_IntegerVery _Long_Integerand similar in packageStandar)l (seeC56
ImplementationDefined Behaviour [FAB]

188 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

1 Ada could define paragma Restrictiongdentifier No_Hidingthat forbids the use of a declaration that
result in a local homograph (s€&2 Identifier Name Reuse [YO)V]

91 Add the ability to declare in the specification of a function that it is ptirat, is, it has no side effects (see
C26 Sideeffects and Ordeof Evaluation [SAM]

1 PragmaRestrictionscould be eiended to restrict the use dAddressattribute to library level static
objects (see€C 35 Dangling References to Stack Frames [DCM]

1 Future standardization of Ada should consider implementing a langpemeded reference counting

storage management mechanism for dynamic objects (&é&Memory Leak [XY).]

Provide mechanisms to prevent further extensions of a type hierarchydgé&enheritance [RIP]

Future standardization of Ada should consider support for arbitrarygmd postconditions (se€45

Argument Passing to Library Functions [JRJ]

1 Ada standardization committees can work with other programming language standardization committees
to define library interfaces that include more than a program calling interface. In particular, mechanisms
to qualify and quantify ranges of behaviour, sushpaeconditions, posttonditions and invariants, would
be helpful (seeC48 Library Signature [NSP]

=A =

© ISTIEC2012¢ All rights reserved 18¢

WG 23/N 027 Baseline Edition 2TR 24772

Annex D
(informative)
Vulnerability descriptions for the language C

D.1 Identification of standar ds and associated documents

ISO/IEC 98920111 Programming LanguagesC

ISO/IEQR 247341:20071 Extensions to the C library Part 1. Boundghecking interfaces
ISO/IEC TR 247212010t Extensions to the C library Part 2: Dynamic Allocation Functions
ISO/IEC 9892011/ Cor. 1:20121 Programming languages C

Db! t NR2SO(©-0 diadys/gcedgil.drg/iubshiyhl#nonbugs (2009).

D.2 General terminology and concepts

access An executiontime action, to read or modify the value of an object. Where only one of two actions is
meant,read or modify. Modify includes the case whetlee new value being stored is the same as the previous
value. Expressions that are not evaluated do not access objects.

alignment Therequirement that objects of a particular type be located on storage boundariesadifhesses
that are particular mulfples of a byte address

argument
actualargument Theexpression in the commseparated list bounded by the parentheses in a function call

expression, or a sequence of preprocessing tokens in the ceseparated list bounded by the parentheses in a
function-like macro invocation.

behaviour Anexternal appearance or action

implementationR S U Wéh&viour Thedzy & LJS li@haldidhiithere each implementation documents hdhe
choice is made Anexample of implementatiofR S U yb&hRviouris the propagation of the highrder bitwhen a
signed integer is shifted right.

localespeD A éRaviour The behaviouthat depends on local conventions of nationalityjture, and language
that eachimplementation documents An examplelpcaled LIS ®éhaliduris whether theislower()
function returns true forcharacters other than the 2@wer case Latin letters.

dzy R S beh&Rur Theuse of a norportable or erroneous program construct or of erroneous désawhich
the C standardmposes no requirementsUy R S U lyeBaRiourranges from ignoring the situation completely
with unpredictéle results, to behaving during translation or program execution in a documented manner

characteristic of theenvironment (with or without the issuance of a diagnostic message), to terminating a

translation orexecution (with the issuance of a diagnostiessage).An example ofdzy’ R S Ubgh&viduris the

behaviourz y Ay GS3ISNI 23SNb2gd

190 © ISTIEC2012 ¢ All rights reserve

http://gcc.gnu.org/bugs.html

Baseline Editiol2 TR 24772 WG 23/N 027

dzy a LIStehatidiRhedza S 2 F |y dzy & LIS BehdviSuRvhaieithe @ssandard pidvidasmo 6rNJ
more possibilities and imposes no further requirements on which is chosen imgtapce For example,
dzy a LJS kiekaliGuis the order in which the arguments to a function asealuated.

bit: Theunit of data storage in the execution environment large enough to hold an object thahemagyone of
two values It need not be possible to expse the address of each individual bit of an object.

byte: Theaddressable unit of data storage large enough to holdraaymnber of the basic characteet of the
execution environmentlt is possible to express the address of each individual byte of @ctalmiquely. Abyte
is composed of a ediguous sequence of bits, the number of which is implementafo§ Uy S Redst ¢ K S
AAAYAUOI yi lowkoiderbitili KOS Y 2S3R1 (8KASA y A Unighofdérbio A G A& OF £ £ SR

character Anabstractmember of a set of elements used for the organizatioontrol, orrepresentation of
data

singlebyte character The bit representation that fits in a byte.

multibyte character Thesequence of one or more bytes representing a member of the extended character set
of either the source or the execution ensitment Theextended character set is a superset of the basic
character set.

wide character Thebit representation thawill (t in an objectcapable of representing argharacter in the
current locale The C Standard uses the type namuhar_t for this object.

correctly rounded result Therepresentation in the result format that is nearest in value, subject to the current
roundingmode, to what the result would be givamlimited range and precision

diagnostic message Themessage belonging to an implementatienlS Uy SR &ddz0 aSid 2F G KS A
messageutput. The C Standard requires diagnostic messages for all consti@ations.

implementation A particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs fand supports execution dfinctions in, a particular
execution enviroment.

implementation limit Therestriction imposed upon programs by the implementation

memory locationEither an object of scald? type, or a maximal sequence of adjacentfiéids all having

nonzero width Abit-field- and an adjacent nobit-Ueld member are in separate memory locatioff$ie same
applies to twobit-fieldsUX A F 2yS Aa RSOt FNBR AyaiARS | ySadsSR ai
two are separated by a zedength bitUeld declaration,or if theyare separated by a nebit-Ueld member

declaration. liis not safe to concurrently update twmt-fieldU Ay GKS & YS &4 NHzOG dzZNB A
between them are also bitelds no matter what the sizes of those intervening-bitlds happen to be. For

example astructure declared as

struct {

10Integer types, Floating types and Pointer types are collectively csdigdrtypes in the C Standard.

© ISTIEC2012¢ All rights reserved 191

WG 23/N 027 Baseline Edition 2TR 24772

char a;
int b:5, ¢:11, :0, d:8;
struct { int ee:8; } e;

}

contains four separate memory locations: The memigand bitUeldsd ande.ee are separatememory
f20FGA2yaz FyR Ol ywishGut iM&f&ingivhrracd @&hédziNBdghiahd c together
constitute the fourth memory locationThe bitUeldsb andc O | Y&ddncurrentlyy 2 R A U StRahda pcdaibe
concurrently modified

object Theregion of data storage in the execoiti environment, the contents of which can represeatues
Whenreferenced, an object may be interpreted as having a particular type.

parameter

formal parameter The202S 00 RSOfFNBR & LINIH 2F | FdzyOlimz2y RS
SYyiNER G2 G4KS TFdzy Ol A 2y I -sephidtdd Yist bbuRGy by i@ itideseNBMediatelyS 02 Y
following the macro name in a functidike Y ON2 RSUYyAGA2Y

recommended practice Aa LJISOA UOF GA2Yy GKIFG Aa &dNR ywth e intdBtO2he Y Sy R
C $andard, but that may be impractical for some implementations

runtime-constraint Arequirement on a program when calling a library function

value Theprecise meaning of the contents of an object when interpreted as havihgg© A U.0 G & LIS

implementationR S Uy S R Aidilrytadz§S OA USR @I f dzS 6 KSNBE S Otle chowdfdr S Y Sy i
the valueis selected.

indeterminate value IsSA G KSNJ +y dzyaLISOAUSR @FfdzS 2NJ I (NI LI NBLN

dzy & LIS O A [TBeRaliddvalde di$e relevant type wher¢he CStandard imposes nequirements on which
value is chosen in arigstance Andzy &8 LISOAUSR @It dz§ OFyy2i 06S | (NI LI NB

trap representation An object representation that need not represent a value of the object type

blockstructured languageA language that has a syntax for enclosing structures betweaokieted keywords,
such as aif statement bracketed bif andendif, asinFORTRAMTr a code section bracketed BEGIN
andEND as inPL/1.

combstructured languag: Alanguage that haan ordered set okeywords to define separate sections within
a block, analogous to the multiple teeth or prongs in a comb separating sections of the comb. For example, in
Ada a block is a4pronged comb with keyworddeclare , begi n, exception ,end, and theif statementin
Ada is a $ronged comb with keyword$,then , else , end if

192 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

D.3 Type System [IHN]

D.3.1 Applicability to language

C is a statically typed language. In some ways C is both strongly and weakly typed a®# atiqrariables to be
typed, but sometimes allows implicit or automatic conversion between types. For example, C will implicitly
convert along int to anint and potentially discard many significant digits. Note that integer sizes are
implementation efined so that in some implementations, the conversion frolargg int ~ to anint cannot

discard any digits since they are the same size. In some implementations, all integer types could be implementel
as the same size.

C allows implicit conversions astlire following example:

short a = 1023;
int b;
b=a;

If an implicit conversion could result in a loss of precision such as in a conversion from aB2tbita 16 bit
short int

int a = 100000;
short b;
b=a

manycompilers will issue a wam message.

C has a set of rules to determine how conversion between data types will occur. For instance, every integer type
has an integer conversion rank that determines how conversions are performed. The ranking is based on the
concept that each integetlype contains at least as many bits as the types ranked below it.

The integer conversion rank is used in thsaial arithmetic conversions to determine what conversions need to
take place to support an operation on mixed integer types.

Other conversionules exist for other datéype-conversions. So even though there are rules in place and the
rules are rather straightforward, the variety and complexity of the rules can cause unexpected results and
potential vulnerabilities. For example, though thes a prescribed order in which conversions will take place,
determining how the conversions will affect the final result can be difficult as in the following example:

long foo (short a, int b, int ¢, long d, long e, long f) {
return (b +f) *d T a +e)/c)
}

The implicit conversions performed in theturn statement can be nontrivial to discern, but can greatly impact
whether any of the intermediate values wrap around during the computation.

D.3.2 Guidance to language users

1 Follow the advicgrovided in 6.3.5.

© ISTIEC2012¢ All rights reserved 193

WG 23/N 027 Baseline Edition 2TR 24772

1 Consideration of the rules for typing and conversions will assist in avoiding vulnerabilities.
1 Make casts explicit to give the programmer a clearer vision and expectations of conversions.

D.4 Bit Representations [STR]

D.4.1 Applica bility to language

C supports a variety of sizes for integers suchast int ,int ,longint andlong long int . Each

may either be signed or unsigned. C also supports a variety of bitwise operators that make bit manipulations easy
such as left and rigtshifts and bitwise operators. These bit manipulations can cause unexpected results or
vulnerabilities through miscalculated shifts or platform dependent variations.

Bit manipulations are necessary for some applications and may be one of the reasoap#rticular application

was written in C. Although many bit manipulations can be rather simple in C, such as masking off the bottom
three bits in an integer, more complex manipulations can cause unexpected results. For instance, right shifting a
signedinteger is implementation defined in C, while shifting by an amount greater than or equal to the size of the
data type is undefined behaviour. For instance, on a host wheintaris of size 32 bits,

unsigned int foo(const int k) {
unsigned int i =1;
return i<<k;

}

is undefined for values d&f greater than or equal to 32.

The storage representation for interfacing with external constructs can cause unexpected results. Byte orders
may be in littleendian or bigendian format and unknowirg switching between the two can unexpectedly alter
values.

D.4.2 Guidance to language users

1 Only use bitwise operators on unsigned integer values as the results of some bitwise operations on signed
integers are implementation defined.

1 Use commonly available functions suchhéenl() , htons() ,ntohl() andntohs() to convert
from host byte ordeto network byte order and vice versa. This would be needed to interface between
an i80x86 architecture where the Least Significant Byte is first with the network byte order, as used on
the Internet, where the Most Significant Byte is firdtote: functions such as these are not part of the C
standard and can vary somewhat among different platforms.

1 In cases where there is a possibility that the shift is greater than the size of the variable, perform a check
as the following example shows, or a modulouetion before the shift:

unsigned int i;
unsigned int k;
unsigned int shifted_i;
e

if (k < sizeof(unsigned int)*CHAR_BIT)

194 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

shifted i =i<<k;
else
/I handle error condition

D.5 Floating -point Arithmetic [PLF]

D.5.1 Applicability to language

C pernits the floatingpoint data types float, double and long double. Due to the approximate nature of fleating
point representations, the use of float and double data types in situations where equality is needed or where
rounding could accumulate over multgiterations could lead to unexpected results and potential vulnerabilities
in some situations.

As with most data types, C is flexible in hitmat , double andlong double can be used. For instance, C
allows the use of floatingoint types to be used asdp counters and in equality statements. Even though a loop
may be expected to only iterate a fixed number of times, depending on the values contained in the fhaating
type and on the loop counter and termination condition, the loop could executvir For instance iterating a
time sequence using 10 nanoseconds as the increment:

float f;
for (f=0.0; f!'=1.0; f+=0.00000001)

may or may not terminate after 10,000,000 iterations. The representations usédaiod the accumulated
effect of many iteations may cause to not be identical to 1.0 causing the loop to continue to iterate forever.

Similarly, the Boolean test

float f=1.336f;
float g=2.672f;

if (f==(9/2))

may or may not evaluate to true. Given tHaandg are constant values, it is egpted that consistent results will
be achieved on the same platform. However, it is questionable whether the logic performs as expected when a
float that is twice that of another is tested for equality when divided by 2 as above. This can depend on the
values selected due to the quirks of floatipgint arithmetic.

D.5.2 Guidance to language users

1 Do not use a floatingoint expression in a Boolean test for equality. In C, implicit casts may make an
expression floatingpoint even though the programmeridinot expect it.

1 Check for an acceptable closeness in value instead of a test for equality when using floats and doubles to

avoid rounding and truncation problems.
1 Do not convert a floatinggoint number to an integer unless the conversion is a specifigarithmic
requirement or is required for a hardware interface.

© ISTIEC2012¢ All rights reserved 19E

WG 23/N 027 Baseline Edition 2TR 24772

D.6 Enumerator Issues [CCB]

D.6.1 Applicability to language

The enum type in C comprises a set of named integer constant values as in the example:

enum abc {A,B,C,D,E,F,G,H} var_abc;

The \alues of the contents adbc would beA=0, B=1, C=2, and so on C allows values to be assigned to the
enumerated type as follows:

enum abc {A,B,C=6,D,E,F=7,G,H} var_abc;

This would result in:

A=0,B=1,C=6, D=7,E=8, F=7,G=8 H=9

yielding both gaps ithe sequence of values and repeated values.

If a poorly constructe@numtype is used in loops, problems can arise. Consider the enumeratedlype
defined above used in a loop:

int x[8];

for (i=A; i<=H; i++) {
t = X[i];

}

Because the enumerated tg@mbc has been renumbered and because some numbers have been skipped, the
array will go out of bounds and there is potential for unintentional gaps in the use of

D.6.2 Guidance to language users

)l
T

196

Follow the guidance of 6.6.5.

Use enumerated types imé default form starting at O and incrementing by 1 for each member if
possible. The use of an enumerated type is not a problem if it is well understood what values are
assigned to the members.

Avoid using loops that iterate over an enum that has représgon specified for the enums, unless it can
be guaranteed that there are ngapsor repetition of representation values within the enum definition.

Use an enumerated type to select from a limited set of choices to make possible the use of tools to detec
omissions of possible values such as in switch statements.

Use the following format if the need is to start from a value other than 0 and have the rest of the values
be sequential:

enum abc {A=5,B,C,D,E,F,G,H} var_abc;

Use the following format if gapare needed or repeated values are desired and so as to be explicit as to
the values in thenum, then:

© ISQIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

enum abc {

} var_abc;
D.7 Numeric Conversion Errors [FLC]

D.7.1 Applicability to language

C permits impli¢iconversions. That is, C will automatically perform a conversion without an explicit cast. For
instance, C allows

inti;

float f=1.25f;

i=f;

This implicit conversion will discard the fractional parf &ind seti to 1. If the value of is greate than
INT_MAX then the assignment df to i would be undefined.

The rules for implicit conversions in C are defined in the C standard. For instance, integer types smaitier than
are promoted when an operation is performed on them. If all values ofd@mg character or integer type can be
represented as aimt , the value of the smaller type is converted toiah ; otherwise, it is converted to an
unsignednt .

Integer promotions are applied as part of the usual arithmetic conversions to certain argexpmnessions;
operands of the unary, - , and~ operators, and operands of the shift operators. The following code fragment
shows the application of integer promotions:

char ci, c2;
cl=cl+c2;

Integer promotions require the promotion of each variafité andc2) toint size. The twant values are
added and the sum is truncated to fit into tlebar type.

Integer promotions are performed to avoid arithmetic errors resulting from the overflow of intermediate values.
For example:

signed char cresult, c1 , C2, C3;
¢l =100;

c2=3;

c3 =4,

cresult=cl *c2/c3;

© ISTIEC2012¢ All rights reserved 197

WG 23/N 027 Baseline Edition 2TR 24772

In this example, the value ofl is multiplied byc2. The product of these values is then divided by the valueSof
(according to operator precedence rules). Assuming that signed char esegpied as an-8it value, the product

of c1 andc2 (300) cannot be represented. Because of integer promotions, howetec2, andc3 are each
converted toint , and the overall expression is successfully evaluated. The resulting value is truncatecradd st
incresult . Because the final result (75) is in the range of the sighed type, the conversion fronmt back

to signed char does not result in lost data. It is possible that the conversion could result in a loss of data
should the data be largeh&in the storage location.

A loss of data (truncation) can occur when converting from a signed type to a signed type with less precision. For
example, the following code can result in truncation:

signed long int sl = LONG_MAX;
signed char sc = (signed cha nsl;

The C standard defines rules for integer promotions, integer conversion rank, and the usual arithmetic
conversions. The intent of the rules is to ensure that the conversions result in the same numerical values, and that
these values minimize surprisén the rest of the computation.

D.7.2 Guidance to language users

1 Check the value of a larger type before converting it to a smaller type to see if the value in the larger type
is within the range of the smaller type. Any conversion from a type with larger precision to a smaller
precision type could potentially restitt a loss of data. In some instances, this loss of precision is desired.
Such cases should be explicitly acknowledged in comments. For example, the following code could be
used to check whether a conversion from an unsigned integer to an unsignectterasdl! result in a loss
of precision:

unsigned int i;
unsigned char c;
é
if (i <= UCHAR_MAX) { // check against the maximum value for an object
of type unsigned char
¢ = (unsigned char) i;

}
else {

/I handle error condition
}

1 Close attention should be given to all warning messages issued by the compiler regarding multiple casts.
Making a cast in C explicit will both remove the warning and acknowledge that the change in precision is
on purpose.

198 © ISTIEC2012 ¢ All rights reserve

Baseline Editiol2 TR 24772 WG 23/N 027

D.8 String Termination [CJM]

D.8.1 Applicability to language

A string in C is composed of a contiguous sequence of characters terminated by and including a null character (a
byte with all bits set to 0). Therefore strings in C cannot contain the null character except as the tewgninati
character. Inserting a null character in a string either through a bug or through malicious action can truncate a
string unexpectedly. Alternatively, not putting a null character terminator in a string can cause actions such as
string copies to contime well beyond the end of the expected string. Overflowing a string buffer through the
intentional lack of a null terminating character can be used to expose information or to execute malicious code.

D.8.2 Guidance to language users

1 Usethe safer and more secure functions for string handlirtat are defined imormativeAnnex Krom
ISTIEC 9899:201M4] or the ISO TR24731 Part Il: Dynamic allocation function8dh of thesedefine
alternative string handling library functions to tarrent Standard C Library. The functions verify that
receiving buffers are large enough for the resulting strings being placed in them and ensure thaigesu
strings are null terminated. One implementation of these functions has been released as the Safe C
Library.

D.9 Buffer Boundary Violation (Buffer Overflow) [HCB]

D.9.1 Applicability to language

A buffer boundary violation condition occurs whem array is indexed outside its bounds, or pointer arithmetic
results in an access to storage that occurs outside the bounds of the object accessed.

In C, the subscript operatdy is defined such thaE1[E2] is identical to(*((E1)+(EZ2))) , So that in eithe
representation, the value in locatiqie1+E2) is returned. C does not perform bounds checking on arrays, so
the following code:

int foo(const int i) {
int x[] = {0,0,0,0,0,0,0,0,0,0};
return x][i];

}

will return whatever is in locatior[i] even if,i were equal to-10 or 10 (assuming either subscriptas still
within the address space of the program). This could be sensitive information or even a return address, which if
altered by changing the value ®f - 10] or x[10] , could change the progm flow.

The following code is more appropriate and would not violate the boundaries of thexarray

int foo(constint i) {
int X[X_SIZE] ={ 0}
if i<0]li>=X_SIZE) {
return ERROR_CODE;
}

© ISTIEC2012¢ All rights reserved 19¢

WG 23/N 027 Baseline Edition 2TR 24772

else {
return x][i];

}
}

A buffer boundary violation maylsp occur when copying, initializing, writing or reading a buffer if attention to
the index or addresses used are not taken. For example, in the following move operation there is a buffer
boundary violation:

char buffer _src[]={fabcdefgo};
char buffer_dest [5]={0};
strepy(buffer_dest, buffer_src);

the buffer_src s longer than théuffer_dest , and the code does not check for this before the actual copy
operation is invoked. A safer way to accomplish this copy would be:

char buffer _src[loF{fAabcdefg
char buffer_dest[5]={0};
strncpy(buffer_dest, buffer_src, sizeof(buffer_dest) -1);

this would not cause a buffer bounds violation, however, because the destination buffer is smaller than the
42dz2NOS o60dzFFSNE G(GKS RSadAyl ﬁ‘éleanfntojtueTaﬁf@Nduld hofdthentlp 6 K2 R
character.

D.9.2 Guidance to language users

Validate all input values.

Check any array index before use if there is a possibility the value could be outside the bounds of the
array.

Use length restrictive functiorsuch astrncpy() instead ofstrcpy/()

Use stack guarding adrhs todetectoverflows of stack buffers.

Do not use the deprecated functiows other language features such gsts()

Be aware that the use of all of these measures may still not be abtepcali buffer overflows from
happening. However, the use of them can make it much rarer for a buffer overflow to occur and much
harder to exploit it.

1 Use the safer and more secure functions for string handling from the normative annex K of C11 [4],
Bounds-checking interfacesThe functions verify that output buffers are large enough for the

intended result and return a failure indicator if they are not. Optionally, failing functions call a
runtime-constraint handleto report the aror. Data is never written past the end of an array. All

string results are null terminated. In addition, gefunctionsare reentrant: they never return

pointers to static objects owned by the functioAnnex Kalso contains functions that address
insecurities with the C inpeautput facilities.

=A =

=A =4 =4 =4

200 © ISTIEC2012 ¢ All rights reserve

