ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

ISO/IEC JTC 1/SC 22/WG 23 N 0399

Date: 2012-05-25
ISO/IEC IS 17960

Secretariat: ANSI

Information Technology—Programming languages, their environments and
system software interfaces—Code Signing for Source Code

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: International standard
Document subtype: if applicable
Document stage: (20) development stage
Document language: E

© ISO/IEC 2012 - All rights reserved i

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.
While the reproduction of working drafts or committee drafts in any form for use by
participants in the ISO standards development process is permitted without prior permission
from ISO, neither this document nor any extract from it may be reproduced, stored or
transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be
addressed as shown below or to ISO’s member body in the country of the requester:

ISO copyright office

Case postale 56, CH-1211 Geneva 20
Tel. +4122 749 01 11

Fax + 412274909 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing
agreement.

Violators may be prosecuted.

© ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Table of Contents

FOPEWOID ...ttt sttt e st e s b et e s et e s b et e sb et e s b et e sbe e e sar e e e snaeesanes iv
INEFOAUCTION .ottt sttt e st e s ssr e e s be e e smre e e snneesanreeennnes v
Yoo] o1 OO PP PTR PO OPPPPPRRR 6
2. NOIMAtiVe REFEIENCES ..ottt ettt e e s e e s smae e e saree e 6
3. Terms and DefiNitiONScuii i 6
N 0] o1 o T4 o - Lol OO PO P TP R PPPTOPPPRPP 7
T 0] o ol o | £ P PP P PP PSR PPPPPPPRR 7
6. STrUCTUIES AN APIS (ot e e sree e 9
6.1 LCT= o 1= T | OO P PP PR OPPTRPPRROTR 9
6.2 Source Code File FOIMAt «...uoiiiiiiiiieieee e s 9
6.3 STIUCTUIES 1t e e a e e e e e e e s sbabae e e e e s 9
& % a w1 O ol Y- N X PO OPPPPPPPPPTPPPPPR 10
ST IN ol s B 3 s L6 o Yo LT PO P PP PPPPPPPPTN 10
6.0 COT LS IONIWIAD teereetrttruuiarreetttruirereetturueseeerttrniseeerertaneseerassnssseeeeeermnasseerenmnnaneseeresssmseseseernns 11
B .7 COT L HA S Mt 12
6.8 CErtDECTrYPESIgNATUTE ittt e e e et s s e e e eeb e e s eeraar e e e e eeerans 12
TN ol v VAR ol I i V45 Bl @ § o F= 1w b sl S OO PP PP TPPPPPRPP 12
6.10 CE T L UNIWI AT tttuuuereerttnruuieeeerttunuaeereetesnnseeereesanssseerassnnsseseeeessnsnsseereesnnsnsseesaesnnsesessensnsnsesenees 13
Annex A (informative) A possible method of Operation.........cccccuveeiiiciiiii i 14
211 o] [To Y= - e o 1V U RUPRRR S 16

© ISO/IEC 2012 - All rights reserved iii

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IECJTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC IS 17960, which is an International Standard, was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages, their
environments and system software interfaces.

iv © ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Introduction

Source code is written and is used in many critical applications. Knowing that the source code being
relied upon is the same as that which was used in testing is vital to ensuring the safety and security of a
particular application. Given the ease with which source code can be modified, some method of
protection of the source code is necessary. Sequestration of the source code is one method, but
ensuring protection in that way is impractical and unreliable. Virtual protection through the use of a
digital signature offers a practical solution and provides integrity even though the source code may
traverse an insecure supply chain.

Modifications to source code are frequently made to correct the software or to adapt it for other
purposes. Rarely are the modifications made by the original author. Revision control software allows
for a tracking of the software changes, but those changes can be easily spoofed. Digital code signing
provides a means to assign a responsible party to each of the modifications as they are made.

This International Standard specifies the APIs necessary for signing source code in a manner that allows
signatures to be applied to ensure the integrity and a means for reversing the application of the
signatures to unwrap the source code. Annex A provides a step by step description of a typical
application of source code signing and the APIs necessary for each step in the process. A bibliography
lists documents that were referred to during the preparation of this standard.

© ISO/IEC 2012 - All rights reserved v

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

International Standard ISO/IEC IS 16960:201X(E)

Information Technology — Programming Languages — Code Signing for Source
Code

1. Scope

This document uses a language-neutral and environment-neutral description to define the application
program interfaces (APIs) and supporting data structures necessary to support the signing of code and
executables. Itisintended to be used by both applications developers and library implementers.

The following areas are outside the scope of this specification:

* Graphics interfaces

* Object or binary code portability
* System configuration and resource availability

2. Normative References
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated

references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 10118-2:2000, Information technology — Security techniques — Hash-functions — Part 2: Hash-
functions using an n-bit block cipher

ISO/IEC 10118-3:2003, Information technology — Security techniques — Hash-functions — Part 3:
Dedicated hash functions

ISO/IEC 14750:1999, Information technology -- Open Distributed Processing -- Interface Definition
Language

ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key and

Attribute Certificate Frameworks", Recommendation X.509, August 2005, http://www.itu.int/rec/T-REC-
X.509/en.

3. Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

3.1 digital certificate

electronic block of data received from a trusted certificate authority that certifies the authenticity of the

sender’s public key, identifies the creator of the sender’s public/private key, and contains the sender’s
public key

6 © ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

3.2 digital certificate

electronic block of data received from a trusted certificate authority that certifies the authenticity of the
sender’s public key, identifies the creator of the sender’s public/private key, and contains the sender’s
public key

3.3 digital signature

data appended to, or a cryptographic transformation of, a data unit that allows the recipient of the data
unit to prove the source and integrity of the data unit and protect against forgery

34 private key

key of an entity’s asymmetric key pair which should only be used by that entity and shall not normally
be disclosed

3.5 public key
key of an entity’s asymmetric key pair which can be made public
3.6 public key encryption

a cryptographic technique which enables users to securely communicate on an insecure public network
and reliably verify the identity of a user via digital signatures

4. Conformance

An implementation of code signing conforms to this International Standard if it provides the interfaces
specified in Clause 6.

Clause 5 is informative, providing an overview of the concepts of code signing. Annex A, also
informative, provides a possible scenario of usage for the interfaces specified in Clause 6.

5. Concepts

Code signing is a technique for providing a digital signature for scripts and source code supporting the
verification of the origin and supporting the verification that it has not been altered since it was signed.

Code signing can provide several valuable functions such as:

* knowledge of where the code originated

* confidence that the code has not been accidentally or maliciously altered
* verification of the identity of the responsible party for the code

* accountability for the code

* non-repudiation of the source of the code

© ISO/IEC 2012 - All rights reserved 7

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Code Signing identifies to customers the responsible party for the code and confirms that it has not
been modified since the signature was applied. In traditional software sales where a buyer can
physically touch a package containing the software, the buyer can confirm the source of the application
and its integrity by examining the packaging. However, most software is now procured via the Internet.
Software procurement is not limited to complete applications as code snippets, plug-ins, add-ins,
libraries, methods, drivers, etc. are all downloaded over the Internet. Verification of the source of the
software is extremely important since the security and integrity of the receiving systems can be
compromised by faulty or malicious code. In addition to protecting the security and integrity of the
software, code signing provides authentication of the author, publisher or distributor of the code, and
protects the brand and the intellectual property of the developer of the software by making applications
uniquely identifiable and more difficult to falsify or alter.

When software source code is associated with a publisher's unique signature, distributing software on
the Internet is no longer an anonymous activity. Digital signatures ensure accountability, just as a
manufacturer's brand name ensures accountability with packaged software. Distributions on the
Internet lack this accountability and code signing provides a means to offer accountability.
Accountability can be a strong deterrent to the distribution of harmful code. Even though software may
be acquired or distributed from an untrusted site or a site that is unfamiliar, the fact that it is signed by a
known and trusted entity allows the software to be used with confidence that it has not been changed.

In addition to the valuable functions that code signing offers, this International Standard will specifically
facilitate the following capabilities:

* atracking mechanism to show what has been altered in the code and by whom
* multiple signatures to allow an audit trail of the signed object

¢ versioning information

¢ storage of other meta data about an object

The capability for a tracking mechanism and multiple signatures for one piece of code would be needed
in some cases in order to create a digital trail through the origins of the code. Consider a signed piece of
code. Someone should be able to modify a portion of the code, even if just one line or even one
character, without assuming responsibility for the remainder of the code. A recipient of the code should
be able to identify the responsible party for each portion of the code. For instance, a very trustworthy
company A produces a driver. Company B modifies company A’s driver for a particular use. Company B
is not as trusted or has an unknown reputation. The recipient should be able to determine exactly what
part of the code originated with company A and what was added or altered by company B so as to be
able to concentrate their evaluation on the sections of code that company B either added or altered.
This necessitates a means to keep track of the modifications made from one digital signature to the
next.

An alternative scenario is software offered by company B that contains software from company A.

Company B does not alter company A’s software, but incorporates it into a package or suite of software.
It would be useful to a customer to be able to identify the origin of each portion of the software.

8 © ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

6. Structures and APIs

6.1 General

The structures and APIs described below are intended to be language and platform independent. A
particular language implementation will need to specify, for instance, an appropriate convention for
specifying options and determine how error reporting will be done.

The structures and APIs are described with a syntax that is independent of any particular programming
language, using the Interface Description Language (IDL) provided by ISO/IEC 14750:1999.

The identifiers used within the APls are expressed using camel case (e.g. isIntTrue instead of underscores
is_int_true). Particular language implementations may prefer to implement the APIs using underscores.
Either is acceptable as long as the implementation is consistent throughout the language
implementation and with ISO/IEC 14750:1999 Section 4.1.3.

6.2 Source Code File Format

For the initial signing of a source code file, a hash is generated for the source code. The signature block
for the source code file consisting of the hash followed by the developer’s digital certificate is then
added to the beginning of the file. When modifications are made to previously signed code, the changes
are recorded and appended to the beginning of the source code file and a new hash of this file is
generated. The new signature block is then added to the beginning of the file. This allows the series of
modifications, which can be thought of as encapsulations, to be reversed one at a time. The newest
signature can be removed from the code and the changes that were made to the code from the next
newest signature can be reversed to identify the previously signed version.

The initial signing of source code, by default, stores the changes in snapshot format. Subsequent
encapsulations can use either snapshot or changeset format.

6.3 Structures

Additional descriptions of the fields used in these structures are available in ITU-T Recommendation
X.509.

struct algorithmIdentifierStruct {

unsigned short algorithm; // used to identify the cryptographic
// algorithm
string parameters; // optional parameters associated

// with the algorithm

struct certStruct /{ // structure for an X.509 certificate
unsigned short version; // certificate format version
unsigned long serialNumber; // unique identifier generated by
// the certificate issuer
algorithmIdentifierStruct algorithmID; // the algorithm used by

© ISO/IEC 2012 - All rights reserved 9

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

// the issuer to sign the certificate
string issuerName; // representation of its issuer's
// identity in the form of a
// Distinguished Name
int validNotBeforeDate; // the start of the time period 1in
// which a certificate i1s intended
// to be used
int validNotAfterDate; // the end of the time period in
// which a certificate 1s intended
// to be used
string subjectName; // a representation of its
// subject's identity in the form
// of a Distinguished Name
unsigned short publicKeyAlgorithm; // public key algorithm to be
// used
string subjectPublicKey; // public key component of 1its
// associated subject
string issuerUniqueldentifier; // optional issuer unique
// identifier
string subjectUniqueldentifier; // optional subject unique
// identifier
string extensions; // optional extensions
algorithmIdentifierStruct certificateSignatureAlgorithm;
// specifies the algorithm
// used by the issuer to sign the
// certificate
string certificateSignature; // signature of the certificate

}

struct keyStruct { // structure for X.509 private key
string privateKey;

}

6.4 certCreate

Notional Syntax
boolean certCreate (
string certificateFile

)
Description
CertCreate createsthefile certificateFile thatshall contain a certificate that conforms with

ITU-T X.509.

Returns
CertCreate returns TRUE if the certificate was successfully created and FALSE otherwise.

6.5 certSignCode

10 © ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Notional Syntax
boolean certSignCode (
certStruct myCertificate,
keyStruct myPrivateKey,
string sourceFilename,
unsigned int signatureAlgorithm,
string signFilename,
boolean overwriteCurrentSignatureFile

)

Description

CertSignCode generates a digital signature (encrypted hash) of the source code file
sourceFilename using public certificate myCertificate and private key myPrivateKey. The
default hashing algorithm for signing shall be SHA-1. Alternative hashing functions that are specified in
ISO/IEC 10118-3:2004 may be used instead and would be indicated through the value contained in
signatureAlgorithm. The digital signature and publisher’s certificate are stored in the file
signFilename. If permitted by the implementation, the extension for the filename shall be “. ds”. If
signFilename already exists, then overwriteCurrentSignatureFile mustbe setto TRUE
or certSignCode will return an error that the file could not be created since it already exists.

Returns
CertSignCode returns TRUE if the digital signature was successfully created and FALSE otherwise.

6.6 certSignWrap

Notional Syntax

boolean certSignWrap (
certStruct myCertificate,
keyStruct myPrivateKey,
string originalSourceFilename,
string modifiedSourceFilename,
unsigned int signatureAlgorithm,
string signFilename

)

Description

Incorporates changes to the previously signed file originalSourceFilename in such a way that
the changes can be unwrapped at a later date in order to revert to a previously signed version.
CertSignWrap generates a digital signature (encrypted hash) of the source code file
modifiedSourceFilename using public certificate myCertificate and private key
myPrivateKey. The default hashing algorithm for signing shall be SHA-1. Alternative hashing
functions that are specified in ISO/IEC 10118:2004 may be used instead and would be indicated through
the value contained in signatureAlgorithm. The digital signature, publisher’s certificate and
changes between the current version and the previous version are appended to the end of the file
signFilename.

Returns
© ISO/IEC 2012 - All rights reserved 11

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

CertSignWrap returns TRUE if the signature was successfully created and FALSE otherwise.

6.7 certHash

Notional Syntax
boolean certHash (
string sourceFilename,
unsigned int signatureAlgorithm

)

Description

CertHash generates a digital finger print (hash) of the source code contained in file
sourceFilename. The default hashing algorithm for signing shall be SHA-1. Alternative hashing
functions that are specified in ISO/IEC 10118:2004 may be used instead and would be indicated through
the value contained in signatureAlgorithm.

Returns
CertHash returns TRUE if the hash was successfully generated and FALSE otherwise.

6.8 certDecryptSignature

Notional Syntax

boolean certDecryptSignature (
certStruct myCertificate,
keyStruct myPrivateKey,
string signFilename

)

Description
CertDecryptSignature decrypts the digital signature of the source code file contained in
signFilename using myCertificateand myPrivateKey.

Returns
CertDecryptSignature returns TRUE if the digital signature was successfully decrypted and FALSE
otherwise.

6.9 certVerifySignature

Notional Syntax

boolean certVerifySignature (
certStruct myCertificate,
keyStruct myPrivateKey,
string signFilename

)

Description

12 © ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

CertVerifySIgnature verifies that the most recent digital signature of the source code file
signFilename isvalid and returns either an indication that the “signature is valid” or that the
“signature is not valid”. This accomplishes in one step what certHash () and
certDecryptSignature () doin multiple steps. Note that the hashing algorithm is inferred by the
length of the signed hash and thus need not be specified by the user.

Returns
CertVerifySignature returns TRUE if the signature is valid and FALSE otherwise.

6.10 certUnwrap

Notional Syntax

boolean certUnwrap (
string signFilename,
string sourceFilename

)

Description

CertUnwrap reverts the previously signed file signFilename to the last previously signed version.
CertUnwrap will remove the most recent signature from signFilename and the most recent set of
changes in order to revert to the next most recent signature and source code. If newSignFilename
is non-Null, then the unwrapped file contents are placed in newSignFilename.

After the operation is complete, certVerifySignature can be run to ensure the file they are
viewing is the previous version of source code and has a valid signature.

Returns
CertUnwrap returns TRUE if the unwrapping was successful and FALSE otherwise.

© ISO/IEC 2012 - All rights reserved 13

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Annex A
(informative)
A possible method of operation

This annex describes one possible way of using the interfaces specified in Clause 6 of this
International Standard.

Publisher obtains a Code Signing Digital ID (Software Publishing Certificate) from a global
certificate authority

The acquisition of a Code Signing Digital ID is outside the scope of this international standard. Once the
Code Signing Digital ID has been acquired, the publisher uses certCreate to create a certificate file.

Publisher develops code or modifies previously signed code
This international standard places no requirements on the activities of code development.

Calculate a hash of the code and create a new file containing the encrypted hash, the
publisher's certificate and the code

There are possible cases. The first is signing code which does not have a signature. The second is
signing code received from others and which already contains a signature.

For new code that does not have a signature, a one-way hash of the code is produced using
certsigncode, thereby signing the code.

For previously signed code, a one-way hash of the code is produced using certSignWrap to sign the
code.

The hash and publisher’s certificate are appended to the beginning of the file containing the code.
Therefore, for previously signed code, the newest signature will appear first in the file containing the
code.

The digitally signed file is transmitted to the recipient

The means of transmission of the digitally signed file is beyond the scope of this international standard.
The recipient produces a one-way hash of the code

CertHash is used to produce a one-way hash of the code.

Using the publisher's public key contained within the publisher's Digital ID and the digital
signature algorithm, the recipient browser decrypts the signed hash with the sender’s public
key

14 © ISO/IEC 2012 - All rights reserved

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

CertDecryptSignatureis used to decrypt the signed hash with the sender’s public key. Steps 5
and 6 can be accomplished in one step using certVerifySignature.

The recipient compares the two hashes

If the signed hash matches the recipient's hash, the signature is valid and the document is intact and
hasn't been altered since it was signed.

Software that has multiple signings must be able to be “unwrapped” using certUnwrap in order to
recreate previously signed versions.

© ISO/IEC 2012 - All rights reserved 15

10.

11.

12.

13.

ISO/IEC JTC 1/SC 22/WG 23 N 0399
Working DRAFT of ISO/IEC 17960

Bibliography

Code-Signing Best Practices, http://msdn.microsoft.com/en-
us/windows/hardware/gg487309.aspxJuly 25, 2007

Code Signing Certificate FAQ, http://www.verisign.com/code-signing/information-
center/certificates-fag/index.html, 2011

Code Signing for Developers - An Authenticode How-To, Tech-Pro.net, http://www.tech-
pro.net/code-signing-for-developers.html, 2011.

Oliver Goldman, Code Signing in Adobe AIR, Dr. Dobb’s, September 1, 2008.

How Code Signing Works, https://www.verisign.com/code-signing/information-center/how-
code-signing-works/index.html, 2011.

Introduction to Code Signing, http://msdn.microsoft.com/en-us/library/ms537361(VS.85).aspx,
June 21, 2011.

ISO/IEC 10118-3:2004, Information technology -- Security techniques -- Hash-functions -- Part 3:
Dedicated hash-functions.

ISO/IEC 14750:1999, Information technology -- Open Distributed Processing -- Interface
Definition Language,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486.

ITU-T Recommendation X.509:2008, Information Technology - Open Systems Interconnection -
The Directory: Authentication Framework, http://www.itu.int/rec/T-REC-X.509/en.

Steve Mansfield-Devine, A Matter of Trust, Network Security, Vol 2009, Issue 6, June 2009.
Regina Gehne, Chris Jesshope, Jenny Zhang, Technology Integrated Learning Environment: A
Web-based Distance Learning System, Al-ED'95, 7th World Conference on Artificial Intelligence
in Education, 2001.

Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine, Survivable Key
Compromise in Software Update Systems, The 17th ACM Conference on Computer and

Communications Security, 2010.

Deb Shinder, Code Signing: Is it a Security Feature?, WindowSecurity.com,
http://www.windowsecurity.com/articles/Code-Signing.html?printversion , June 9, 2005.

© ISO/IEC 2012 - All rights reserved

