
ISO/IEC JTC 1/SC 22/WG 23 N 0313 1

Proposed vulnerability descriptions YUK and SUK 2

 3
Date March 21, 2011
Contributed by Erhard Ploedereder
Original file name AI-16-06-YUK-and-SUC.doc
Notes Responds to AI 16-06

 4

I wrote up two vulnerabilites instead of one. 5

 6

The first one deals with the suppression of runtime checks (as I was tasked to do). 7

 8

The second one deals with the de-facto suppression of compile-time checks and with 9

inherently unsafe operations that the language might provide. 10

 11

I simply could not find a good way of combining all three in a single vulnerability, although 12

they are of the same general ilk. All attempts ended in complexity of description. 13

Suppression of Language-Defined Run-Time Checking (YUK) 14

 15

Description of application vulnerability 16

 17

Some languages include the provision for runtime checking to prevent vulnerabilities to arise. 18

Canonical examples are bounds or length checks on array operations or null-value checks 19

upon dereferencing pointers or references. In most cases, the reaction to a failed check is the 20

raising of a language-defined exception. 21

 22

As run-time checking requires execution time and as some project guidelines exclude the use 23

of exceptions, languages may define a way to optionally suppress such checking for regions 24

of the code or the entire program. Analogously, compiler options may be used to achieve this 25

effect. 26

 27

 28

Cross reference 29

 30

 --- 31

 32

 33

Mechanism of Failure 34

 35

The vulnerabilities that should have been prevented by the checks re-emerge whenever the 36

suppressed checks would have failed. For their description, see the respective subsections. 37

 38

 39

Applicable language characteristics 40

 41

This vulnerability description is intended to be applicable to languages with the following 42

characteristics: 43

 44

 Languages that define runtime checks to prevent certain vulnerabilities and 45

 46

 Languages that allow the above checks to be suppressed, or 47

 48

 Languages, whose compilers or interpreters provide options to omit the above checks 49

 50

 51

Avoiding the vulnerability 52

 53

Software developers can avoid the vulnerability or mitigate its ill effects in the following 54

ways: 55

 56

 Do not suppress checks or restrict such suppression to the most performance-critical 57

sections of the code. 58

 59

 Where checks are suppressed, verify that the suppressed checks could not have failed. 60

 61

 Clearly identify code sections where checks are suppressed. 62

 63

 Do not assume that checks in code verified to satisfy all checks could not fail 64

nevertheless due to hardware faults. 65

 66

 67

 68

Provision of Inherently Unsafe Operations (SUK) 69

 70

Description of application vulnerability 71

 72

Languages define semantic rules to be obeyed by legal programs. Compilers enforce these 73

rules and reject violating programs. 74

 75

A canonical example are the rules of type checking, intended among other reasons to prevent 76

semantically incorrect assignments, such as characters to pointers, meter to feet, euro to 77

dollar, real numbers to booleans, or complex numbers to two-dimensional coordinates. 78

 79

Yet, occasionally there arises a need to step outside the rules of the type model to achieve 80

needed functionally. A typical such situation is the casting of memory as part of the 81

implementation of a heap allocator to the type of object for which the memory is allocated. A 82

type-safe assignment is impossible for this functionality. Thus, a capability for unchecked 83

“type casting” between arbitrary types to interpret the bits in a different fashion is a necessary 84

but inherently unsafe operation, without which the type-safe allocator cannot be programmed. 85

 86

Another example is the provision of operations known to be inherently unsafe, such as the 87

deallocation of heap memory without prevention of dangling references. 88

 89

A third example is any interfacing with another language, since the checks ensuring type-90

safeness rarely extend across language boundaries. 91

 92

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used 93

by programmers in situations where their use is neither necessary nor appropriate. As the 94

knowledge of the programmer about implementation details may be incomplete or incorrect, 95

unintended execution semantics may result. 96

 97

The vulnerability is eminently exploitable to violate program security. 98

 99

 100

Cross reference 101

 102

 --- 103

 104

Mechanism of Failure 105

 106

Suppression of checks of the use of inherently unsafe operations circumvents the checks that 107

are normally applied to ensure safe execution. Control flow, data values, and memory 108

accesses can be corrupted as a consequence. See the respective vulnerabilities resulting from 109

such corruption. 110

 111

 112

Applicable language characteristics 113

 114

This vulnerability description is intended to be applicable to languages with the following 115

characteristics: 116

 117

 Languages that allow compile-time checks for the prevention of vulnerabilities to be 118

suppressed by compiler or interpreter options or by language constructs, or 119

 120

 Languages that provide inherently unsafe operations 121

 122

 123

Avoiding the vulnerability 124

 125

Software developers can avoid the vulnerability or mitigate its ill effects in the following 126

ways: 127

 128

 Restrict the suppression of compile-time checks to where the suppression is 129

functionally essential. 130

 131

 Use inherently unsafe operations only when they are functionally essential. 132

 133

 Clearly identify program code that suppresses checks or uses unsafe operations. 134

 135

 136

 137

 138

 139

