
ISO/IEC JTC 1/SC 22/OWGV N 0082
James W. Moore and Robert Seacord, "Secure Coding becomes Standard," presentation
to Systems and Software Technology Conference (SSTC), June 19, 2007

Date 2 July 2007
Contributed by James W. Moore and Robert Seacord
Original file name SSTC2007 rcs jwm 2a fullf.pdf
Notes

Moore and Seacord,
SSTC 2007 - 30

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG: Vulnerability Status 2
The body of Technical Report describes
vulnerabilities in a generic manner, including:

• Brief description of application vulnerability
• Cross-reference to enumerations, e.g. CWE
• Categorizations by selected characteristics
• Description of failure mechanism, i.e. how coding

problem relates to application vulnerability
• Points at which the causal chain could be broken
• Assumed variations among languages
• Ways to avoid the vulnerability or mitigate its effects

Annexes provide language-specific treatments of
each vulnerability.

Moore and Seacord,
SSTC 2007 - 31

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG: Vulnerability Status 3
OWGV maintains a web site for its work:
http://aitc.aitcnet.org/isai/
Meeting schedule:

• OWGV #5 2007-07-18/20 SCC, Ottawa, Canada
• OWGV #6 2007-10-1/3 Kona, Hawaii, USA
• OWGV #7 2007-12 (during week of 10 - 14) SEI,

Pittsburgh, PA, USA

Moore and Seacord,
SSTC 2007 - 32

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

OWG:Vulnerability Product
A type 3 Technical Report

• A document containing information of a different kind from that which
is normally published as an International Standard

Scope:
• The TR describes a set of common mode failures that occur across

a variety of languages.
• The document will not contain normative statements, but information

and suggestions.

No single programming language or family of programming
languages is to be singled out

• As many programming languages as possible should be involved
• Need not be just the languages defined by ISO Standards

Moore and Seacord,
SSTC 2007 - 33

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Dual Approach to Identifying Vulnerabilities

Empirical approach: Observe the vulnerabilities that
occur in the wild and describe them, e.g. buffer
overrun, execution of unvalidated remote content
Analytical approach: Identify potential vulnerabilities
through analysis of programming languages

The second approach may help us
identify tomorrow’s vulnerabilities.

Moore and Seacord,
SSTC 2007 - 34

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Analytical Approach
Vulnerabilities occur when software behaves in a manner that
was not predicted by a competent developer. Sources of such
vulnerabilities include:

• Issues arising from lack of knowledge
— Complex language features or interactions of features that may be

misunderstood

— Portions of the language left unspecified by the standard

— Portions of the language that are implementation-defined

— Portions of the language that are specified as undefined

• Issues arising from human cognitive limitations, i.e, exceeding the
human ability to understand

• Issues arising from non-standard extensions of languages

Moore and Seacord,
SSTC 2007 - 35

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Language-Independent Vulnerability Description Example 1

6.1 SM-004 Out of bounds array element access
6.1.1 Description of application vulnerability
Unpredictable behaviour can occur when accessing the elements of an array
outside the bounds of the array.
6.1.2 Cross reference
CWE: 129
6.1.3 Categorization
Section 5.1.2
6.1.4 Mechanism of failure
Arrays are defined, perhaps statically, perhaps dynamically, to have given bounds. In order to access an element of the array, index values for one or
more dimensions of the array must be computed. If the index values do not fall within the defined bounds of the array, then access might occur to the
wrong element of the array, or access might occur to storage that is outside the array. A write to a location outside the array may change the value of
other data variables or may even change program code.

6.1.5 Possible ways to avoid the failure
The vulnerability can be avoided by not using arrays, by using whole array operations, by checking and preventing access beyond the bounds of the
array, or by catching erroneous accesses when they occur. The compiler might generate appropriate code, the run-time system might perform checking,
or the programmer might explicitly code appropriate checks.

Moore and Seacord,
SSTC 2007 - 36

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Language-Independent Vulnerability Description Example 2

6.1.6 Assumed variations among languages
This vulnerability description is intended to be applicable to languages with the
following characteristics:

• The size and bounds of arrays and their extents might be statically determinable or dynamic. Some languages provide both capabilities.

• Language implementations might or might not statically detect out of bound
access and generate a compile-time diagnostic.

• At run-time the implementation might or might not detect the out of bounds access and provide a notification at run-time. The notification
might be treatable by the program or it might not be.

• Accesses might violate the bounds of the entire array or violate the bounds of a particular extent. It is possible that the former is checked
and detected by the implementation while the latter is not.

• The information needed to detect the violation might or might not be available depending on the context of use. (For example, passing an
array to a subroutine via a pointer might deprive the subroutine of information regarding the size of the array.)

• Some languages provide for whole array operations that may obviate the
need to access individual elements.

• Some languages may automatically extend the bounds of an array to accommodate accesses that might otherwise have been beyond the
bounds. (This may or may not match the programmer's intent.)

Moore and Seacord,
SSTC 2007 - 37

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Language-Independent Vulnerability Description Example 3

6.1.7 Avoiding the vulnerability or mitigating its effects
Software developers can avoid the vulnerability or mitigate its ill effects in the
following ways:

• If possible, utilize language features for whole array operations that obviate the need to access individual
elements.

• If possible, utilize language features for matching the range of the index variable to the dimension of the array.
• If the compiler can verify correct usage, then no mitigation is required beyond performing the verification.

• If the run-time system can check the validity of the access, then appropriate action may
depend upon the usage of the system (e.g. continuing degraded operation in a safety-critical system versus immediate termination of a
secure system).

• Otherwise, it is the responsibility of the programmer:
— to use index variables that can be shown to be constrained within the extent of the array;
— to explicitly check the values of indexes to ensure that they fall within the bounds of the corresponding dimension of the array;
— to use library routines that obviate the need to access individual elements; or
— to provide some other means of assurance that arrays will not be accessed beyond their bounds. Those other means of assurance

might include proofs of correctness, analysis with tools, verification techniques, etc.

Moore and Seacord,
SSTC 2007 - 38

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

Desired Outcomes
Provide guidance to users of programming
languages that :

• Assists them in improving the predictability of the
execution of their software even in the presence of an
attacker

• Informs their selection of an appropriate programming
language for their job

Provide feedback to language standardizers,
resulting in the improvement of programming
language standards.

Moore and Seacord,
SSTC 2007 - 39

© 2007 The MITRE Corporation and Carnegie
Mellon University. All rights reserved.

For More Information
Visit web sites:

https://www.securecoding.cert.org/
http://aitc.aitcnet.org/isai/

Contact presenters:
Robert C. Seacord
rcs@cert.org
James Moore
moorej@mitre.org

